# Fast Gröbner basis computation and polynomial reduction for generic bivariate ideals 

Robin Larrieu* and Joris Van Der Hoeven ${ }^{1}$<br>${ }^{1}$ INSMI (CNRS) - Centre national de la recherche scientifique - CNRS (France) - France

## Résumé

Let $A, B \in K[X, Y]$ be two bivariate polynomials over an effective field $K$, and let $G$ be the reduced Gröbner basis of the ideal $I:=(A, B)$ generated by $A$ and $B$, with respect to the usual degree lexicographic order. Assuming A and B sufficiently generic, we design a quasi-optimal algorithm for the reduction of $\mathrm{P} \in \mathrm{K}[\mathrm{X}, \mathrm{Y}]$ modulo G , where "quasi-optimal" is meant in terms of the size of the input $\mathrm{A}, \mathrm{B}, \mathrm{P}$. Immediate applications are an ideal membership test and a multiplication algorithm for the quotient algebra $\mathrm{A}:=\mathrm{K}[\mathrm{X}, \mathrm{Y}] /$ (A, B), both in quasi-linear time. Moreover, we show that $G$ itself can be computed in quasi-linear time with respect to the output size.

[^0]
[^0]:    * Intervenant

