Sketches and streaming algorithms for string processing

Tatiana Starikovskaya
Streaming model

Objectives: real time & small space
When to use: stream data, big data
Classical approaches won’t work: to answer a question deterministically and exactly, we need to store the input in full.

Relaxations: randomisation + approximation

Tools: sketches (= lossy compression of the data) — capture essential properties of the data
Outline of today’s talk

- Part I: Exact pattern matching
- Part II: String similarity and approximate pattern matching
- Part III: Periodicity
Part I: Exact pattern matching
Exact pattern matching

- **Query** = “Is there an occurrence of P?”
- **Space** = total space used by the stream processor
- **Time** = time per position of T
Exact pattern matching

- **Query** = “Is there an occurrence of P?”
- **Space** = total space used by the stream processor
- **Time** = time per position of T
Exact pattern matching

Text T

$c\ a\ a\ b\ c\ a\ a\ a$

Pattern P

- **Query** = “Is there an occurrence of P?”
- **Space** = total space used by the stream processor
- **Time** = time per position of T
Exact pattern matching

- **Query** = “Is there an occurrence of P?”
- **Space** = total space used by the stream processor
- **Time** = time per position of T
Exact pattern matching

- **Query** = “Is there an occurrence of P?”
- **Space** = total space used by the stream processor
- **Time** = time per position of T
Karp–Rabin algorithm

Karp–Rabin fingerprint

\[\varphi(s_1s_2 \ldots s_m) = \sum_{i=1}^{m} s_i \cdot r^{m-i} \mod p \]

where \(p \) is a prime and \(r \) is a random integer \(\in [0, p - 1] \)

It’s a good hash function:
\(S_1, S_2 \) are two strings of length \(m \), the prime \(p \) is large

- If \(S_1 = S_2 \), then \(\varphi(S_1) = \varphi(S_2) \)
- If \(S_1 \neq S_2 \), then \(\varphi(S_1) \neq \varphi(S_2) \) w.h.p.
Karp–Rabin algorithm

When a new character $t_i = a$ arrives:

1. Update $\varphi(t_{i-m+1} \ldots t_{i-1}t_i) = \sum_{j=1}^{m} t_{i-m+j} \cdot r^{m-j} \mod p$:

$$\varphi(t_{i-m+1} \ldots t_{i-1}t_i) = (\varphi(t_{i-m} \ldots t_{i-1}t_{i-1}) - t_{i-m} \cdot r^{m-1}) \cdot r + t_i \mod p$$

2. If $\varphi(t_{i-m+1} \ldots t_{i-1}t_i) = \varphi(P)$, output “YES”

We need t_{i-m} to update the fingerprint ⇒ we must store t_{i-m}, \ldots, t_{i-1}
Exact pattern matching

<table>
<thead>
<tr>
<th>Authors</th>
<th>Space ¹</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karp & Rabin, 1987</td>
<td>$\Theta(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Porat & Porat, FOCS’09</td>
<td>$O(\log m)$</td>
<td>$O(\log m)$</td>
</tr>
<tr>
<td>Breslauer & Galil, CPM’11</td>
<td>$O(\log m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Dictionary of d patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clifford, Fontaine, Porat</td>
<td>$O(d \log m)$</td>
<td>$O(\log \log (m + d))$</td>
</tr>
<tr>
<td>Sach, S., ESA’15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golan & Porat, ESA’17</td>
<td>$O(d \log m)$</td>
<td>$O(\log \log</td>
</tr>
<tr>
<td></td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
</tbody>
</table>

¹In words
Exact pattern matching

<table>
<thead>
<tr>
<th>Authors</th>
<th>Space 1</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karp & Rabin, 1987</td>
<td>$\Theta(m)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Porat & Porat, FOCS’09 ★</td>
<td>$O(\log m)$</td>
<td>$O(\log m)$</td>
</tr>
<tr>
<td>Breslauer & Galil, CPM’11</td>
<td>$O(\log m)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Dictionary of d patterns				
Clifford, Fontaine, Porat Sach, S., ESA’15	$O(d \log m)$	$O(\log \log(m + d))$		
Golan & Porat, ESA’17	$O(d \log m)$	$O(\log \log	\Sigma)$
	$O(\Sigma	^{\varepsilon} d \log(m/\varepsilon))$	$O(1/\varepsilon)$

1In words
Fine and Wilf’s periodicity lemma
If a string \(Q \) has two periods of length \(p \) and \(q \) and \(p + q \leq |Q| \), then \(Q \) also has a period of length \(\gcd(p, q) \).

Corollary
If \(|Y| = 2|X| \), and \(Y \) contains \(\geq 3 \) occurrences of \(X \), they form an arithmetic progression with difference equal to the smallest period of \(X \).

Occurrences of \(X \) in \(Y \) can be stored in \(O(1) \) space.
text T

occurrences of p_1

occurrences of p_1p_2

occurrences of $p_1p_2p_3p_4$

occurrences of $P = p_1p_2 \ldots p_m$

for each character t_i do
 if $t_i = p_1$ then push i to level 0
 for each $j = 0, \ldots, \log m - 1$
 $lp \leftarrow$ leftmost position in level j
 if $i - lp + 1 = 2^{j+1}$ then
 Pop lp from level j
 if $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2^{j+1}})$ then push lp to level $j + 1$
for each character t_i do
 if $t_i = p_1$ then push i to level 0
for each $j = 0, \ldots, \log m - 1$
 $lp \leftarrow$ leftmost position in level j
 if $i - lp + 1 = 2^{j+1}$ then
 Pop lp from level j
 if $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2^{j+1}})$ then push lp to level $j + 1$
text T

occurrences of p_1

occurrences of p_1p_2

occurrences of $p_1p_2p_3p_4$

occurrences of $P = p_1p_2 \ldots p_m$

for each character t_i do

 if $t_i = p_1$ then push i to level 0

for each $j = 0, \ldots, \log m - 1$

 $lp \leftarrow$ leftmost position in level j

 if $i - lp + 1 = 2^{j+1}$ then

 Pop lp from level j

 if $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2j+1})$ then push lp to level $j + 1$

If i is an occ. of p_1, push it to level 0
text T

\begin{itemize}
 \item occurrences of p_1
 \item occurrences of p_1p_2
 \item occurrences of $p_1p_2p_3p_4$
 \item \ldots
 \item occurrences of $P = p_1p_2\ldots p_m$
\end{itemize}

\textbf{for} each character t_i \textbf{do}

\textbf{if} $t_i = p_1$ \textbf{then} push i to level 0

\textbf{for} each $j = 0, \ldots, \log m - 1$

\begin{itemize}
 \item $lp \leftarrow$ leftmost position in level j
 \item \textbf{if} $i - lp + 1 = 2^{j+1}$ \textbf{then} Pop lp from level j
 \item \textbf{if} $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2^{j+1}})$ \textbf{then} push lp to level $j + 1$
\end{itemize}

If i is an occ. of p_1, push it to level 0
text T

occurrences of p_1

occurrences of p_1p_2

occurrences of $p_1p_2p_3p_4$

occurrences of $P = p_1p_2 \ldots p_m$

For each character t_i do
 if $t_i = p_1$ then push i to level 0
 for each $j = 0, \ldots, \log m - 1$
 $lp \leftarrow$ leftmost position in level j
 if $i - lp + 1 = 2^{j+1}$ then
 Pop lp from level j
 if $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2j+1})$ then push lp to level $j + 1$

If lp is an occ. of p_1p_2, promote it
text T
\begin{itemize}
\item \text{occurrences of p_1}
\item \text{occurrences of p_1p_2}
\item \text{occurrences of $p_1p_2p_3p_4$}
\item \text{occurrences of $P = p_1p_2 \ldots p_m$}
\end{itemize}

\begin{algorithm}
for each character t_i do
 if $t_i = p_1$ then push i to level 0
 for each $j = 0, \ldots, \log m - 1$
 $lp \leftarrow$ leftmost position in level j
 if $i - lp + 1 = 2^{j+1}$ then
 Pop lp from level j
 if $\varphi(t_{lp} \ldots t_i) = \varphi(p_1 \ldots p_{2^{j+1}})$ then push lp to level $j + 1$
\end{algorithm}

If lp is an occ. of p_1p_2, promote it
In level j, we store occurrences of $p_1p_2\ldots p_j$ in $T[i - 2^{j+1} + 1, i]$. They form an arithmetic progression. We store:

- Number of occurrences
- The leftmost and the second leftmost positions lp, lp'
- The fingerprints $\varphi(t_1t_2\ldots t_{lp}), \varphi(t_{lp+1}\ldots t_{lp'}), \varphi(t_1\ldots t_i)$
text T \hfill t_i
\hline
occurrences of p_1
\hline
occurrences of p_1p_2
\hline
occurrences of $p_1p_2p_3p_4$
\hline
occurrences of $P = p_1p_2 \ldots p_m$
\hline

For each level we need:

- $O(1)$ space
- $O(1)$ time for updating and extracting $\varphi(t_l p \ldots t_i)$

In total, the algorithm uses $O(\log m)$ space and $O(\log m)$ time per character
Part II: String similarity and approximate pattern matching
String similarity

Given two streams S_1, S_2 (S_1 arrives before S_2), compute the distance between them.

Approximate pattern matching

$\text{dist}(P, T)$

T: c a a b c a a a a c a

P: b c a a a a c

pattern P
String similarity (Hamming distance)

Johnson & Lindenstrauss, 1984: one can compute $(1 + \varepsilon)$-approximation of the Hamming distance between two streams using $O(\varepsilon^{-2} \log n)$ space and $O(\varepsilon^{-2} \log n)$ time per character.

Porat & Lipsky, 2007: one can decide if the Hamming distance between two streams is $\leq k$ using $O(k \log n)$ space and $O(\log n)$ time per character.
Approximate pattern matching (Hamming distance)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pattern, only distances ≤ k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porat & Porat, FOCS’09</td>
<td>$\tilde{O}(k^3)$</td>
<td>$\tilde{O}(k^2)$</td>
</tr>
<tr>
<td>Clifford, Fontaine, Porat, Sach, S., SODA’16</td>
<td>$\tilde{O}(k^2)$</td>
<td>$\tilde{O}(\sqrt{k})$</td>
</tr>
<tr>
<td>Golan, Kopelowitz, Porat, ICALP’18</td>
<td>$\tilde{O}(k)$</td>
<td>$\tilde{O}(k)$</td>
</tr>
<tr>
<td>Clifford, Kociumaka, Porat, SODA’19</td>
<td>$\tilde{O}(k)$</td>
<td>$\tilde{O}(\sqrt{k})$</td>
</tr>
</tbody>
</table>

| Single pattern, $(1 + \varepsilon)$-approx. | | |
| Clifford, S., ICALP’16 | $O(\varepsilon^{-5} \sqrt{m \log^4 m})$ | $O(\varepsilon^{-4} \log^3 m)$ |

| Dictionary of d patterns, only distances ≤ k | | |
| Gawrychowski, S. (submitted) | $\tilde{O}(kd \log^k d)$ | $\tilde{O}(k \log^k d + \text{occ})$ |

2In words
If $\text{HAM}(P,T) > k$, output "NO"

Otherwise, output $\text{HAM}(P,T)$

There is a streaming algorithm that uses $\tilde{O}(k^3)$ space and $\tilde{O}(k^2)$ time per character of the text
From 1 mismatch to exact pattern matching

```
string_1
a b a a c b a b a a b b
```

```
string_2
a b a c c b a b a a a b
```

- Is HAM \((string_1, string_2)\) = 1?
From 1 mismatch to exact pattern matching

- Is $\text{HAM}(\text{string}_1, \text{string}_2) = 1$?
- Partition the strings into substrings of q colors
- One mismatch \Rightarrow one pair of substrings does not match
- **Hope:** If there are ≥ 2 mismatches, they will end up in substrings of different colors \Rightarrow at least 2 pairs of substrings do not match
From 1 mismatch to exact pattern matching

For each prime $q \in [\log m, \log^2 m]$:
- Partition $string_1$ into q equi-spaced substrings
- Partition $string_2$ into q equi-spaced substrings

In total: $O(\log m)$ primes, and for each prime there are $O(\log^2 m)$ pairs of substrings
From 1 mismatch to exact pattern matching

Lemma There are ≥ 2 mismatches $\times_1, \times_2 \Rightarrow$ there exists a prime q such that at least two pairs of substrings do not match

- \times_1, \times_2 in the same pair $\Leftrightarrow \times_1 - \times_2 = 0 \pmod{q}$
- $m \geq \times_1 - \times_2$ cannot be a multiple of $\log m$ distinct primes
From 1 mismatch to exact pattern matching

Is $\text{HAM}(P, T) = 1$?

for each position of the text T do
 for each prime q in $[\log m, \log^2 m]$ do
 $h \leftarrow$ number of (substream, subpattern) that mismatch
 if $h = 0$ or $h > 1$ return “NO”
 return “YES”
From 1 mismatch to exact pattern matching

Compute number of mismatching pairs

\[\text{for each prime } q \text{ in } [\log m, \log^2 m] \text{ do } \]
\[\text{for each (substream, subpattern) do } \]
\[\text{run streaming exact pattern matching } \]
From 1 mismatch to exact pattern matching

text T

pattern P

Space = $O\left(\frac{\log m}{\# \text{ of primes}} \cdot \frac{\log^2 m}{\# \text{ of substr.}} \cdot \frac{\log^2 m}{\# \text{ of subpatterns}} \cdot \log m\right)$

Time = $O\left(\frac{\log m}{\# \text{ of primes}} \cdot \frac{\log^2 m}{\# \text{ of substr.}} \cdot \frac{\log^2 m}{\# \text{ of subpatterns}}\right)$

In general: $\tilde{O}(k^3)$ space, $\tilde{O}(k^2)$ time
(same as for $k = 1$ but take more subpatterns)
String similarity (edit distance)

Chakraborty, Goldenberg, Koucky, STOC’16: small distortion embedding from edit to Hamming distance

Belazzougui, Zhang, FOCS’16: embedding-based sketches for computing the edit distance exactly given that it is $\leq k$
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>3n</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th></th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S :</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td></td>
<td>...</td>
<td></td>
<td>text position = 1, j = 1</td>
<td></td>
</tr>
</tbody>
</table>

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>3n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

text position = 1, $j = 1$

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.

Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

... ... 0 1

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

text position = 1, $j = 1$

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

	0	1	2	3	4	5	6	7	8																						
0	0	1	1	0	1	1	0	0																							
1	1	1	1	1	0	1	0	1																							

... 0

... 1

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(S)$</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.

text position = 1, $j = 2$
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th></th>
<th>3n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>text position = 1, $j = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.

Embedding from edit to Hamming distance

Pick 3m random functions \(h_j : \{0, 1\} \rightarrow \{0, 1\} \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

... ... 3n

Copy letters of \(S \) to \(\mu(S) \):

\[
S : \begin{array}{llll}
0 & 1 & 0 & \cdots & 0 \\
\end{array}
\]

\[
\mu(S) : \begin{array}{llll}
0 & 0 & \cdots & 0 \\
\end{array}
\]

1. Copy \(S[i] \). If \(h_j(S[i]) = 1 \), move to the right;
2. \(j = j + 1 \).
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
<th>3n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.

text position = 2, $j = 3$
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

1 2 3 4 5 6 7 8

| 0 | 0 1 1 0 1 1 0 0 |
| 1 | 1 1 1 1 0 1 0 1 |

... ... 3n

| 0 |
| 1 |

Copy letters of S to $\mu(S)$:

| 1 2 3 n |
| S: 0 1 0 ... 0 |
| $\mu(S)$: 0 0 1 |

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.

text position = 2, $j = 3$
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>3n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... 0

... 1

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S:</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$\mu(S)$:</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

text position = 2, $j = 3$

1. Copy $S[i]$. If $h_j(S[i]) = 1$, move to the right;
2. $j = j + 1$.
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>3n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

... 0

... 1

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S : 0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(S)$: 0</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

text position = 2, $j = 3$

When the length of $\mu(S)$ reaches $3n$, stop. If the length of $\mu(S) < 3n$, append with zeros.

Theorem. If $ED(S, T) = k$, then $k/2 \leq HD(\mu(S), \mu(T)) \leq \mathcal{O}(k^2)$ with probability 0.99.
Embedding from edit to Hamming distance

Pick $3m$ random functions $h_j : \{0, 1\} \rightarrow \{0, 1\}$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>...</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Copy letters of S to $\mu(S)$:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>S : 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\mu(S)$: 0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

text position = 2, $j = 3$

Belazzougui, Zhang, FOCS'16

- Embedding + streaming alg’m for k^2-mismatch ⇒ a good estimate for edit distance
- If $ED(S, T) \leq k$, $\tilde{O}(k^2)$ embeddings + streaming alg’m for k^2-mismatch ⇒ exact value!
Approximate pattern matching (edit distance)

Given a pattern P and a text T, the edit distance $ED(P, T)$ is defined as:

- If $ED(P, S) > k$, output "NO"
- Otherwise, output $ED(P, S)$

Algorithms:

- Hybrid dynamic programming: $O(m)$ space, $O(k)$ time
- S., 2017: $O(\sqrt{m} \cdot poly(k, \log m))$ space, $O(\sqrt{m} \cdot poly(k, \log m))$ time
Approximate pattern matching (edit distance)

Starting from each block i, run Belazzougui & Zhang, 2016

$$ED[j] = \min_{i \in [r-k, r+k]} ED(P[1, B - i], T_1) + ED(P[B - i + 1, m], T_2)$$

We compute $ED(P[1, B - i], T_1)$ while reading T_1 using dynamic programming, then encode the distances to restore later.
Part III: Periodicity
Periodicity

For each prefix of the input stream, compute its period

Motivation:

- Detecting anomalies in streams
- Preprocessing for pattern matching
Periodicity

Exact periods
Ergün et al., APPROX-RANDOM’10
- Periodic streams: $O(\log n)$ space, $O(\log n)$ time
- Non-periodic streams: $\Omega(m)$ space

Approximate periods (Hamming distance $\leq k$)
Ergün et al., APPROX-RANDOM’17
- Periods of length $< n/2$: $\tilde{O}(k^4)$ space
- All periods: $\Omega(n)$ space

Approximate periods ($\leq k$ wildcards)
Ergün et al., CSR’18
- Periods of length $< n/2$: $\tilde{O}(k^3)$ space
- All periods: $\Omega(n)$ space
Exact periods

We will show how to compute the period if it is $\leq n/4$

Lemma The period is equal to ρ iff $T[1, n - \rho] = T[\rho, n]$

Lemma The only candidate for the period, ρ is the first occurrence of $T[1, n/2]$ in T
Exact periods

We will show how to compute the period if it is $\leq n/4$

\[
\begin{align*}
T[1, n/2] & \quad T[1, n/2] \\
T[1, n/2] & \quad T[1, n/2] \\
\end{align*}
\]

Algorithm:

- Use the exact pattern matching algorithm to find the first occurrence ρ of $T[1, n/2]$ (happens when $T[\rho + n/2 - 1]$ arrives)
- Memorize $\varphi(T[1, n - \rho])$ (we have $n - \rho \geq \rho + n/2$)
- If $\varphi(T[1, n - \rho]) = \varphi(T[\rho, n])$, then ρ is the period w.h.p
Summary of today’s talk

Streaming algorithms:

- String similarity for Hamming and edit distances
- Exact pattern matching — $O(\log m)$ space, $O(1)$ time
- k-mismatch (Hamming distance) — $\tilde{O}(k)$ space, $\tilde{O}(\sqrt{k})$ time
- k-mismatch (edit distance) — $\tilde{O}(\sqrt{m} \ \text{polylog} \ k)$ space, $\tilde{O}(\sqrt{m} \ \text{polylog} \ k)$ time
- Periodicity

Thank you!