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The graph isomorphism problem

Input: graphs G and H
Question: are G and H isomorphic?
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Complexity

not likely to be NP-complete

The graph isomorphism problem is in NP.

Not known to be solvable in polynomial time.

Theorem [Babai’17]. The graph isomorphism problem is solvable in
time 2O(log(n)c), for some fixed c > 0.

best we know
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This talk

What is the power of such algorithms?
Which instances can we solve?

Algorithms that compute:
an answer and
a certificate/proof that the answer is correct.

Approach: Study algorithms by analysing proof systems.

Compare with:
combinatorial algorithms
distinguishability in logic
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Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,

Step 2: solve the system.

Step 2: determine if there EXISTS a solution.

Step 2: APPROXIMATELY determine if there exists a solution.

We only want to know if there EXISTS an isomorphism.
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Step 1: equations

Input: graphs G and H
Compute: a system of equations ISO(G,H)

8
>>>>>><

>>>>>>:

x2
vw � xvw = 0 for every v 2 V(G),w 2 V(H)
P

w2V(H) xvw � 1 = 0 for every v 2 V(G)
P

v2V(G) xvw � 1 = 0 for every w 2 V(H)

xvwxv0w0 = 0 if (v, v0) 2 E(G), (w,w0) 62 E(H)

xvwxv0w0 = 0 if (v, v0) 62 E(G), (w,w0) 2 E(H)

SOLUTION () ISOMORPHISM

Solving systems of polynomial equations is intractable.
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Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,

Step 2: solve the system.

Step 2: determine if there exists a solution.

Step 2: APPROXIMATELY determine if there exists a solution.

We only want to know if there EXISTS an isomorphism.

We can use proof systems!
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Step 2: computing a proof

Step 2: compute a proof that there is no solution

always correct

Output:

if the algorithm finds a proof ! “no isomorphism”
otherwise ! “I do not know”

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output “no isomorphism”
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Proofs

Step 2: compute a proof that there is no solution

different type of proof $ different algorithm

Algorithms: Techniques:
linear programming hierarchy of algorithms

Gröbner basis hierarchy of algorithms

semidefinite programming hierarchy of algorithms
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Semidefinite Proofs

(
x2 + y + 2 = 0
x � y2 + 3 = 0

A semidefinite proof that there is no solution:

�6·(x2 + y + 2)+2·(x � y2 + 3)+
1
3
+2

✓
y +

3
2

◆2

+6
✓

x � 1
6

◆2

= �1

arbitrary polynomials sum of squares of polynomials

degree of the proof ! max degree of polynomials on the left
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Finding Semidefinite Proofs

(
x2 + y + 2 = 0
x � y2 + 3 = 0

A semidefinite proof of degree 2 that there is no solution:

a · (x2 + y + 2)+b · (x � y2 + 3)+cx2 +dy2 +exy+ fx+gy+h = �1

arbitrary polynomials sum of squares of polynomials

degree of the proof ! max degree of polynomials on the left
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Finding Semidefinite Proofs
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Proofs

Step 2: compute a proof that there is no solution

restriction of semidefinite programming
finding a proof: linear inequalities

Algorithms: Techniques:
linear programming hierarchy of algorithms

Gröbner basis hierarchy of algorithms

semidefinite programming hierarchy of algorithms

degree of polynomials computing a generating set
in the proof in the ideal of polynomials
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Proofs

Step 2: compute a proof that there is no solution

restriction of semidefinite programming
finding a proof: solving linear equations

Algorithms: Techniques:
linear programming hierarchy of algorithms

Gröbner basis hierarchy of algorithms

semidefinite programming hierarchy of algorithms

computing a generating set degree of polynomials
in the ideal of polynomials in the proof
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Summary of the setting

Algebraic and mathematical-programming techniques:
Step 1: encode an instance as a system of equations,

Step 2: compute a proof that there is no solution

always correct
Output:

if the algorithm finds a proof ! “no isomorphism”
otherwise ! “I do not know”

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output “no isomorphism”
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Colour refinement algorithm

1. take G [̇ H
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number
of neighbours of at least one colour assigned in the previous
round
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Colour refinement algorithm

the number of vertices of some colour in G is different than the
number of vertices of this colour in H ! “no isomorphism”
colourings are the same ! “I do not know”
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k-dimensional Weisfeiler-Lehman algorithm

Similar but we colour k-tuples of vertices :-)
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Counting logic

Ck
1! - first-order logic with:
- counting quantifiers 9�m

- infinite disjunctions and conjunctions
- at most k variables

8x
�
(9�dy E(x, y)) ^ (¬9�d+1y E(x, y))

�
- graph is d-regular
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k-WL and counting logic

The counting logic C2
1! distinguishes G and H.

~w� [Immerman, Lander’90]

Colour refinement distinguishes G and H.

The counting logic Ck+1
1! distinguishes G and H.

~w� [Cai, Fūrer, Immerman’92]

k-dimensional Weisfeiler-Lehman algorithm distinguishes G and H.
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Correspondence

Theorem [Atserias, Maneva’13] [Malkin’14] [Grohe, Otto’11]

[Berkholz, Grohe’15].

The counting logic Ck+1
1! distinguishes G and H.
~w�

k-dimensional Weisfeiler-Lehman algorithm distinguishes G and H.
~w�

Linear programming degree k + 1 distinguishes G and H.
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Consequences

Theorem [Babai, Kučera’80]. Linear programming degree 2
distinguishes almost all graphs.

outputs “I do not know”

It does not distinguish:
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Relative power

For every pair of non-isomorphic graphs G and H:

Linear programming degree k distinguishes G and H.
ww� [Berkholz, Grohe’15]

Gröbner basis degree k distinguishes G and H.
ww� [Berkholz’18]

Semidefinite programming degree 2k distinguishes G and H.

Does semidefinite programming distinguish more graphs than
linear programming?
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Hope: yes!

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation
Linear programming: very bad approximation
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All algorithms are equally powerful!

For every pair of non-isomorphic graphs G and H:

Linear programming degree k distinguishes G and H.
ww� [Berkholz, Grohe’15]

Gröbner basis degree k distinguishes G and H.
ww� [Berkholz’18]

Semidefinite programming degree 2k distinguishes G and H.
ww� [Atserias, O.’18]

Linear programming degree ck distinguishes G and H.

constant independent from k
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All algorithms are equally powerful!

Theorem. For the graph isomorphism problem all three algorithmic
techniques are equally powerful, up to a constant factor loss in the
degree.
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Proof

Fact. Existence of semidefinite proofs reduces to feasibility of SDPs.

Is polytop \ cone of positive semidefinite matrices non-empty?

Key: There exists c, such that feasibility of SDPs is expressible in the
counting logic Cc

1!.
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Proof

For every pair of non-isomorphic graphs G and H:

Semidefinite programming degree 2k distinguishes G and H.
ww�

The counting logic Cck
1! distinguishes G and H.

~w�

Linear programming degree ck distinguishes G and H.
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