Proof complexity of the graph isomorphism problem joint work with Albert Atserias

Joanna Ochremiak

CNRS, LaBRI

Journées Nationales de l'Informatique Mathématique 13th March 2019

The graph isomorphism problem

Input: graphs *G* and *H* **Question:** are *G* and *H* isomorphic?

The graph isomorphism problem

Input: graphs *G* and *H* **Question:** are *G* and *H* isomorphic?

Complexity

not likely to be NP-complete

The graph isomorphism problem is in NP.

Not known to be solvable in polynomial time.

Theorem [Babai'17]. The graph isomorphism problem is solvable in time $2^{O(log(n)^c)}$, for some fixed c > 0.

best we know

This talk

What is the power of such algorithms? Which instances can we solve?

Algorithms that compute:

- an answer and
- a certificate/proof that the answer is correct.

Approach: Study algorithms by analysing proof systems.

Compare with:

- combinatorial algorithms
- distinguishability in logic

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,Step 2: solve the system.

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations, Step 2: solve the system:

Step 2: determine if there EXISTS a solution.

We only want to know if there EXISTS an isomorphism.

Step 1: equations

Input: graphs G and H**Compute:** a system of equations ISO(G, H)

$$\begin{cases} x_{vw}^2 - x_{vw} = 0 & \text{for every } v \in V(G), w \in V(H) \\ \sum_{w \in V(H)} x_{vw} - 1 = 0 & \text{for every } v \in V(G) \\ \sum_{v \in V(G)} x_{vw} - 1 = 0 & \text{for every } w \in V(H) \\ x_{vw} x_{v'w'} = 0 & \text{if } (v, v') \in E(G), (w, w') \notin E(H) \\ x_{vw} x_{v'w'} = 0 & \text{if } (v, v') \notin E(G), (w, w') \in E(H) \end{cases}$$

SOLUTION \iff ISOMORPHISM

Solving systems of polynomial equations is intractable.

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,

Step 2: solve the system.

Step 2: determine if there exists a solution.

Step 2: APPROXIMATELY determine if there exists a solution.

We can use proof systems!

Step 2: computing a proof

Step 2: compute a proof that there is no solution

Output:

- if the algorithm finds a proof \rightarrow "no isomorphism"
- otherwise \rightarrow "I do not know"

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output "no isomorphism" ----

Proofs

Step 2: compute a proof that there is no solution

different **type of proof** \leftrightarrow different algorithm

Algorithms:

- linear programming
- Gröbner basis
- semidefinite programming

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

$$-6 \cdot (x^2 + y + 2) + 2 \cdot (x - y^2 + 3) + \frac{1}{3} + 2\left(y + \frac{3}{2}\right)^2 + 6\left(x - \frac{1}{6}\right)^2 = -1$$

Joanna Ochremiak

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

A semidefinite proof that there is no solution:

$$-6 \cdot (x^2 + y + 2) + 2 \cdot (x - y^2 + 3) + \frac{1}{3} + 2\left(y + \frac{3}{2}\right)^2 + 6\left(x - \frac{1}{6}\right)^2 = -1$$

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

A semidefinite proof that there is no solution:

$$-6 \cdot (x^{2} + y + 2) + 2 \cdot (x - y^{2} + 3) + \frac{1}{3} + 2\left(y + \frac{3}{2}\right)^{2} + 6\left(x - \frac{1}{6}\right)^{2} = -1$$
arbitrary polynomials sum of squares of polynomials

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

A semidefinite proof that there is no solution:

$$-6 \cdot (x^2 + y + 2) + 2 \cdot (x - y^2 + 3) + \frac{1}{3} + 2\left(y + \frac{3}{2}\right)^2 + 6\left(x - \frac{1}{6}\right)^2 = -1$$
arbitrary polynomials
sum of squares of polynomials

degree of the proof \rightarrow max degree of polynomials on the left

Finding Semidefinite Proofs

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

A semidefinite proof of degree 2 that there is no solution:

Finding Semidefinite Proofs

$$\begin{cases} x^2 + y + 2 = 0\\ x - y^2 + 3 = 0 \end{cases}$$

A semidefinite proof of degree 2 that there is no solution:

$$a \cdot (x^2 + y + 2) + b \cdot (x - y^2 + 3) + cx^2 + dy^2 + exy + fx + gy + h = -1$$
sum of squares of polynomials

Finding Semidefinite Proofs

Proofs

Step 2: compute a proof that there is no solution

Proofs

Step 2: compute a proof that there is no solution

Algorithms: Techniques:

- linear programming hierarchy of algorithms
- Gröbner basis hierarchy of algorithms
- semidefinite programming hierarchy of algorithms

degree of polynomials in the proof

Summary of the setting

Algebraic and mathematical-programming techniques: **Step 1:** encode an instance as a system of equations, **Step 2:** compute a proof that there is no solution

- if the algorithm finds a proof \rightarrow "no isomorphism"
- otherwise \rightarrow "I do not know"

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?

output "no isomorphism" -

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

- 1. take $G \dot{\cup} H$
- 2. assign the same colour to all vertices
- Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

the number of vertices of some colour in G is different than the number of vertices of this colour in $H \rightarrow$ "no isomorphism" colourings are the same \rightarrow "I do not know"

k-dimensional Weisfeiler-Lehman algorithm

Similar but we colour *k*-tuples of vertices :-)

Counting logic

- $C^k_{\infty\omega}$ first-order logic with:
 - counting quantifiers $\exists^{\geq m}$
 - infinite disjunctions and conjunctions
 - at most k variables

 $\forall x ((\exists^{\geq d} y E(x, y)) \land (\neg \exists^{\geq d+1} y E(x, y)))$ - graph is *d*-regular

k-WL and counting logic

The counting logic $C^2_{\infty\omega}$ distinguishes *G* and *H*. [Immerman, Lander'90] Colour refinement distinguishes *G* and *H*.

The counting logic $C_{\infty\omega}^{k+1}$ distinguishes *G* and *H*. (Cai, Fūrer, Immerman'92)

k-dimensional Weisfeiler-Lehman algorithm distinguishes G and H.

Correspondence

Theorem [Atserias, Maneva'13] [Malkin'14] [Grohe, Otto'11] [Berkholz, Grohe'15].

The counting logic $C_{\infty\omega}^{k+1}$ distinguishes *G* and *H*. f *k*-dimensional Weisfeiler-Lehman algorithm distinguishes *G* and *H*. fLinear programming degree k + 1 distinguishes *G* and *H*.

Consequences

Theorem [Babai, Kučera'80]. Linear programming degree 2 distinguishes almost all graphs.

Relative power

For every pair of non-isomorphic graphs G and H:

Semidefinite programming degree 2k distinguishes G and H.

Relative power

For every pair of non-isomorphic graphs G and H:

Semidefinite programming degree 2k distinguishes G and H.

Does semidefinite programming distinguish more graphs than linear programming?

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation Linear programming: very bad approximation

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation Linear programming: very bad approximation All algorithms are equally powerful!

For every pair of non-isomorphic graphs G and H:

Linear programming degree k distinguishes G and H. [Berkholz, Grohe'15] Gröbner basis degree k distinguishes G and H. [Berkholz'18] Semidefinite programming degree 2k distinguishes G and H. [Atserias, O.'18] Linear programming degree *ck* distinguishes *G* and *H*. constant independent from k

Theorem. For the graph isomorphism problem all three algorithmic techniques are equally powerful, up to a constant factor loss in the degree.

Proof

Fact. Existence of semidefinite proofs reduces to feasibility of SDPs.

Is polytop \cap cone of positive semidefinite matrices non-empty?

Key: There exists *c*, such that feasibility of SDPs is expressible in the counting logic $C_{\infty\omega}^c$.

Proof

For every pair of non-isomorphic graphs G and H:

Semidefinite programming degree 2k distinguishes G and H. The counting logic $C_{\infty\omega}^{ck}$ distinguishes G and H. fLinear programming degree ck distinguishes G and H.