Proof complexity of the graph isomorphism problem
 joint work with Albert Atserias

Joanna Ochremiak
CNRS, LaBRI

Journées Nationales de l'Informatique Mathématique 13th March 2019

The graph isomorphism problem

Input: graphs G and H
Question: are G and H isomorphic?

The graph isomorphism problem

Input: graphs G and H
Question: are G and H isomorphic?

Complexity

not likely to be NP-complete
The graph isomorphism problem is in NP.

Not known to be solvable in polynomial time.

Theorem [Babai'17]. The graph isomorphism problem is solvable in time $2^{O\left(\log (n)^{c}\right)}$, for some fixed $c>0$.

This talk

What is the power of such algorithms? Which instances can we solve?

Algorithms that compute:

- an answer and
- a certificate/proof that the answer is correct.

Approach: Study algorithms by analysing proof systems.

Compare with:

- combinatorial algorithms
- distinguishability in logic

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations, Step 2: solve the system.

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,
Step 2. solve the system:
Step 2: determine if there EXISTS a solution.

We only want to know if there EXISTS an isomorphism.

Step 1: equations

Input: graphs G and H
Compute: a system of equations $\operatorname{ISO}(G, H)$

$$
\begin{cases}x_{v w}^{2}-x_{v w}=0 & \text { for every } v \in V(G), w \in V(H) \\ \sum_{w \in V(H)} x_{v w}-1=0 & \text { for every } v \in V(G) \\ \sum_{v \in V(G)} x_{v w}-1=0 & \text { for every } w \in V(H) \\ x_{v w} x_{v^{\prime} w^{\prime}}=0 & \text { if }\left(v, v^{\prime}\right) \in E(G),\left(w, w^{\prime}\right) \notin E(H) \\ x_{v w} x_{v^{\prime} w^{\prime}}=0 & \text { if }\left(v, v^{\prime}\right) \notin E(G),\left(w, w^{\prime}\right) \in E(H)\end{cases}
$$

SOLUTION \Longleftrightarrow ISOMORPHISM

Solving systems of polynomial equations is intractable.

Algebraic and mathematical-programming techniques

Step 1: encode an instance as a system of equations,
Step2insolve the-system:
Step 2: determine if therenexists solution
Step 2: APPROXIMATELY determine if there exists a solution.

> We can use proof systems!

Step 2: computing a proof

Step 2: compute a proof that there is no solution

Output:

- if the algorithm finds a proof \rightarrow "no isomorphism"
- otherwise \rightarrow "I do not know"

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?
output "no isomorphism"

Proofs

Step 2: compute a proof that there is no solution

different type of proof \leftrightarrow different algorithm

Algorithms:

- linear programming
- Gröbner basis
- semidefinite programming

Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

$$
-6 \cdot\left(x^{2}+y+2\right)+2 \cdot\left(x-y^{2}+3\right)+\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}=-\mathbf{1}
$$

Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

A semidefinite proof that there is no solution:

$$
-6 \cdot\left(x^{2}+y+2\right)+2 \cdot\left(x-y^{2}+3\right)+\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}=-\mathbf{1}
$$

Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

A semidefinite proof that there is no solution:

$$
-6 \cdot\left(x^{2}+y+2\right)+2 \cdot\left(x-y^{2}+3\right)+\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}=-\mathbf{1}
$$

Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

A semidefinite proof that there is no solution:
$-6 \cdot\left(x^{2}+y+2\right)+2 \cdot\left(x-y^{2}+3\right)+\frac{1}{3}+2\left(y+\frac{3}{2}\right)^{2}+6\left(x-\frac{1}{6}\right)^{2}=-\mathbf{1}$
degree of the proof \rightarrow max degree of polynomials on the left

Finding Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

A semidefinite proof of degree 2 that there is no solution:

Finding Semidefinite Proofs

$$
\left\{\begin{array}{l}
x^{2}+y+2=0 \\
x-y^{2}+3=0
\end{array}\right.
$$

A semidefinite proof of degree 2 that there is no solution:

$$
a \cdot\left(x^{2}+y+2\right)+b \cdot\left(x-y^{2}+3\right)+c x^{2}+d y^{2}+e x y+f x+g y+h=-\mathbf{1}
$$

Finding Semidefinite Proofs

Proofs

Step 2: compute a proof that there is no solution
restriction of semidefinite programming finding a proof: linear inequalities
Algorithms:

- linear programming
- Gröbner basis
- semidefinite programming

Proofs

Step 2: compute a proof that there is no solution

Algorithms: Techniques:

- linear programming hierarchy of algorithms
- Gröbner basis hierarchy of algorithms
- semidefinite programming hierarchy of algorithms
degree of polynomials in the proof

Summary of the setting

Algebraic and mathematical-programming techniques:
Step 1: encode an instance as a system of equations,
Step 2: compute a proof that there is no solution

Output:

- if the algorithm finds a proof \rightarrow "no isomorphism"
- otherwise \rightarrow "I do not know"

Which pairs of non-isomorphic graphs the algorithms DISTINGUISH?
output "no isomorphism"

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

1. take $G \dot{\cup} H$
2. assign the same colour to all vertices

Iterate: assign different colours to vertices that have a different number of neighbours of at least one colour assigned in the previous round

Colour refinement algorithm

Colour refinement algorithm

the number of vertices of some colour in G is different than the number of vertices of this colour in $H \rightarrow$ "no isomorphism" colourings are the same \rightarrow "I do not know"

k-dimensional Weisfeiler-Lehman algorithm

Similar but we colour k-tuples of vertices :-)

Counting logic

$C_{\infty \omega}^{k}$ - first-order logic with:

- counting quantifiers $\exists \geq m$
- infinite disjunctions and conjunctions
- at most k variables
$\forall x((\exists \geq d y E(x, y)) \wedge(\neg \exists \geq d+1 y E(x, y)))$ - graph is d-regular

k-WL and counting logic

The counting logic $C_{\infty \omega}^{2}$ distinguishes G and H.

$$
\Uparrow \quad \text { [Immerman, Lander’90] }
$$

Colour refinement distinguishes G and H.

The counting logic $C_{\infty \omega}^{k+1}$ distinguishes G and H.
§ [Cai, Fūrer, Immerman'92]
k-dimensional Weisfeiler-Lehman algorithm distinguishes G and H.

Correspondence

Theorem [Atserias, Maneva'13] [Malkin'14] [Grohe, Otto'11] [Berkholz, Grohe'15].

The counting logic $C_{\infty \omega}^{k+1}$ distinguishes G and H.

$$
\Uparrow
$$

k-dimensional Weisfeiler-Lehman algorithm distinguishes G and H.

$$
\Uparrow
$$

Linear programming degree $k+1$ distinguishes G and H.

Consequences

Theorem [Babai, Kučera'80]. Linear programming degree 2 distinguishes almost all graphs.

It does not distinguish:

Relative power

For every pair of non-isomorphic graphs G and H :

Linear programming degree k distinguishes G and H. \downarrow [Berkholz, Grohe' 15]
Gröbner basis degree k distinguishes G and H. \downarrow [Berkholz'18]

Semidefinite programming degree $2 k$ distinguishes G and H.

Relative power

For every pair of non-isomorphic graphs G and H :

Linear programming degree k distinguishes G and H.

Gröbner basis degree k distinguishes G and H.

Semidefinite programming degree $2 k$ distinguishes G and H.

Does semidefinite programming distinguish more graphs than linear programming?

Hope: yes!

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation Linear programming: very bad approximation

Hope: yes!

Semidefinite programming much more powerful for many problems.

Example: MAX CUT

Semidefinite programming: best known efficient approximation Linear programming: very bad approximation

All algorithms are equally powerful!

For every pair of non-isomorphic graphs G and H :

Linear programming degree k distinguishes G and H.

$$
\downarrow \quad \text { [Berkholz, Grohe'15] }
$$

Gröbner basis degree k distinguishes G and H.

$$
\downarrow \quad[\text { Berkholz'18] }
$$

Semidefinite programming degree $2 k$ distinguishes G and H.
\downarrow [Atserias, O.'18]

Linear programming degree $c k$ distinguishes G and H. constant independent from k

All algorithms are equally powerful!

Theorem. For the graph isomorphism problem all three algorithmic techniques are equally powerful, up to a constant factor loss in the degree.

Proof

Fact. Existence of semidefinite proofs reduces to feasibility of SDPs.
Is polytop \cap cone of positive semidefinite matrices non-empty?

Key: There exists c, such that feasibility of SDPs is expressible in the counting logic $C_{\infty \omega \omega}^{c}$.

Proof

For every pair of non-isomorphic graphs G and H :

Semidefinite programming degree $2 k$ distinguishes G and H. \downarrow
The counting logic $C_{\infty \omega}^{c k}$ distinguishes G and H.

$$
\Uparrow
$$

Linear programming degree $c k$ distinguishes G and H.

