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Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.

Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.

Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.

Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.

Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.

Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Cellular Automata

Cellular automata are mathematical structures which can be interpreted
either as models of parallel computation, or as dynamical systems.

A cellular automaton Φ : AZ → AZ acts on a bi-infinite one-dimensional
grid of cells with values in the finite alphabet A.

Cell n has a neigbourhood {n − `, . . . , n + r}, and Φ is defined by a local
rule φ : A`+r+1 → A.

An initial condition is selected by assigning a state for each cell.

A new state is created in cell n, using the local rule :
(Φ(x))n = φ(xn−`, . . . xn+r ). All cells are updated simultaneously.

The cellular automata we consider are deterministic. The same local rule is
applied at each cell and does not change over time.
Reem Yassawi (UCBL, France) Algebraicity, automaticity, and invariant measures for linear cellular automataMarch 14, 2019 2 / 23



Spacetime diagrams

Example (Ledrappier)
Let A = F2, φ(a, b) = a + b mod 2, Φ has left neighbourhood ` = 1, and
right neighbourhood r = 0. Φ : FZ

2 → FZ
2 is surjective but not injective:

Φ−1(· · · 00 · 100 · · · ) = {. . . 11111 · 0000 . . . , . . . 00000 · 1111 . . .}.

Definition

If U ∈ AZ×Z satisfies Φ(U|Z×{n}) = U|Z×{n+1} for each n ∈ Z, we call U a
spacetime diagram for Φ.
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Measures that are invariant under the shift and a CA

Definition
The shift map σ : AZ → AZ is defined as (σ(x))n := xn+1.

Question
Which probability laws µ are (σ,Φ)-invariant: µ = µ ◦ σ−1 = µ ◦ Φ−1?

Example:If p = 2 and Φ(x) = x + σ(x), then H := (1/2, 1/2)Z is
(σ,Φ)-invariant.
Take an initial condition x , generated with a certain probability law µ, eg a
Markovian law, or a Bernoulli law. This law is shift invariant. Is it invariant
under the action of Φ?

Example

Let µ ∼ (1/3, 2/3)Z, so µ[0] = 1
3 , µ[1] = 2

3 . Let Φ(x) = x + σ−1(x). Then
µ ◦ Φ−1[0] = µ[00] + µ[11] =

(1
3

)2
+
(2

3

)2
= 5

9 6= µ[0].
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Why do we care about (σ,Φ)-invariance? Motivation

Let f , g : [0, 1]→ [0, 1] be f (x) = 2x mod 1 and g(x) = 3x mod 1. What
are the measures on [0, 1] such that µ(f −1A) = µ(A) = µ(g−1(A))?

Recasting in symbolic dynamics:
Let σ,Φ : {0, 1}Z → {0, 1}Z be the shift map (i.e. ×2) and a cellular
automaton representing ×3. What are the measures such that
µ(σ−1A) = µ(A) = µ(Φ−1(A))?

Theorem (Rudolph, 1990)
If µ is invariant under ×2,×3, and ergodic, and µ has positive entropy for
one of ×2 or ×3, then µ is Lebesgue measure.
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Asymptotic Randomisation: heuristics

Example

Let µ ∼ (1/3, 2/3)Z, so µ[0] = 1
3 , µ[1] = 2

3 . Let Φ(x) = x + σ−1(x). Then
µ ◦ Φ−1[0] = µ[00] + µ[11] =

(1
3

)2
+
(2

3

)2
= 5

9 6= µ[0].

If µ ◦ Φ−1 6= µ, does limn µ ◦ Φ−n exist? It would be (σ,Φ)-invariant.

Example
Let Φ(x) = x + σ−1(x). Then we identify Φ with P(X ) := 1 + X ∈ Fp[X ],
and Φn is identified with (1 + X )n. Then by Lucas’ theorem,

(1 + X )pn
= 1 + X pn

and so µ ◦ Φ−pn
= µ ◦ Φ−1, which is not (σ,Φ)− invariant.

Work with a convergent subsequence of 1
N
∑N−1

n=0 µ ◦ Φ−1: it is
(σ,Φ)-invariant.
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Recall that H is the probability law generated by (1/p, 1/p, . . . 1/p) . It is
also the Haar measure on the group Fp

Z.

Definition

We say that Φ asymptotically randomises µ if 1
N
∑N−1

n=0 µ ◦ Φ−n → H.

Definition
A cellular automaton Φ : FZ

p → FZ
p is linear if its local rule is Fp-linear, i.e.

of the form φ(v−`, . . . , v0, . . . vr ) = α−`v−` + · · ·+ α0v0 + · · ·+ αrvr ,
αi ∈ Fp.

Theorem (Pivato, Y, 2001+)
If µ is mixing and Markovian, and Φ is linear, then Φ asymptotically
randomises µ.
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Measure rigidity

Theorem (Pivato, Y, 2001+)

If µ is mixing and Markovian, and Φ is linear, then 1
N
∑N−1µ◦

n=0 Φ−n → H .

Spacetime diagram, (1/3, 2/3)-random initial condition, Φ(x) = x + σ(x)

Theorem (Host, Maass, Martinez, 2003)
If µ is σ and Φ-invariant, has positive entropy for Φ and is ergodic for σ,
then µ = H.
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Abelian cellular automata

Now consider a shift (GZ, σ), where G is a finite abelian group, GZ is a
group with coordinate-wise addition and Φ : GZ → GZ an abelian cellular
automaton.

Definition
A cellular automaton Φ : GZ → GZ is abelian if
(Φ(v))m = φ−`vm−` + · · ·+ φ0vm + · · ·+ φrvm+r , and each αi : G → G is
a group endomorphism.

Theorem (Hellouin, Salo, Theyssier, 2018)

Let Φ : GZ → GZ be an abelian cellular automaton which has no solitons,
and if µ is mixing and Markovian, then Φ asymptotically randomises µ.
There exist abelian cellular automata such that µ ◦ Φ−n → H.

Are there measures which do not randomise? All these results are telling us
to take 0-entropy initial conditions.
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Some spacetime diagrams I
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Some spacetime diagrams II
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Some spacetime diagrams III
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Automatic initial conditions on spacetime diagrams

Definition
A sequence (an)n≥0 of elements in A is k-automatic if there is a DFAO
(S,Σk , δ, s1,A, ω) such that an = ω(δ(s1, n` · · · n1n0)) for all n ≥ 0, where
n` · · · n1n0 is the standard base-k representation of n.

Example (Catalan numbers mod 4)

The 2-automatic sequence produced by this automaton is

(an)n≥0 = 0, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, . . . .
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Definition
1 A sequence (um)m∈Z is (−p)-automatic if the sequences (um)m≥0 and

(u−m)m≥0 are p-automatic.
2 The sequence (Um,n)m≥0,n≥0 ∈ FN×N

p is [p, p]-automatic if there is a
DFAO (S, {0, . . . , p − 1}2, δ, s0,Fp, ω) such that

Um,n = ω(δ(s0, (m`, n`) · · · (m1, n1)(m0, n0)))

for all (m, n) ∈ N× N, where m` · · ·m1m0 is a base-p representation
of m and n` · · · n1n0 is a base-p representation of n. Here, if m and n
have standard base-p representations of different lengths, then the
shorter representation is padded with leading zeros.

3 A sequence U ∈ FZ×Z
p is [−p,−p]-automatic if each of U|(±N)×(±N) is

[p, p]-automatic.
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Automatic spacetime diagrams

Theorem (Rowland-Y, 2018)

Let Φ : FZ
p → FZ

p be a linear cellular automaton with left and right radii `
and r . Let U ∈ FZ×Z

p be a spacetime diagram for Φ. If the initial
conditions that define U are a collection of p-automatic sequences, then U
is [−p,−p]-automatic.

Spacetime diagram for the Ledrappier CA, where the initial conditions are
the Thue-Morse sequence on the +ve horizontal axis, the reflection of the
TM sequence on both the -ve horizontal axis and the -ve vertical axis.
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Previous work and main tool

Theorem (Allouche, von Haeseler, Lange, Petersen, Peitgen, &
Skordev, 96-97)

If u ∈ (Z/nZ)N is finite, and the LCA whose generating polynomial
Φ ∈ Z/nZ[X ] is not a monomial, then the spacetime diagram
U ∈ (Z/nZ)N×N is [n, n]-automatic if and only if n = pk .

Main tool:

Theorem (Christol’s theorem)
1 A sequence (um)m≥0 of elements in Fp is p-automatic if and only if∑

m≥0 umxm is algebraic over Fp(x).
2 A sequence of elements (Um,n)(m,n)∈N×N in Fp is [p, p]-automatic if

and only if
∑

(m,n)∈N×N Um,nxmyn is algebraic over Fp(x , y).
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Theorem (Rowland-Y, 2018)

Let Φ : FZ
p → FZ

p be a linear cellular automaton with left and right radii `
and r . Let U ∈ FZ×Z

p be a spacetime diagram for Φ. If all initial conditions
are p-automatic, then U is a concatenation of 4 [p, p]-automatic sequences.

0,1

2

0,1

2

2

0,1

0

1

2
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Transfer principle: (σ,Φ)-invariant measures from spacetime
diagrams

Let U ∈ FZ×Z
p be a spacetime diagram for the LCA Φ. Define

XU := {V ∈ FZ×Z
p : LV ⊆ LU},

and let σ1 and σ2 denote the horizontal and vertical shift.

Lemma
Every element of XU is a spacetime diagram for Φ.
There exist (σ1, σ2)-invariant measures supported on XU , and each such
measure µ yields a (σ,Φ)-invariant measure πµ.

So we have some (σ,Φ)-invariant measures. But are they H, or "trivial"?

Proposition (after Berthé, Allouche/Shallit)

If the sequence U ∈ FZ×Z
p is [−p,−p]-automatic, then for some K, its

complexity function satisfies cU(m, n) ≤ K max{m, n}10, so that if µ is a
(σ1, σ2)-invariant measure, then πµ 6= H.
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Examples

Example

The only (σ1, σ2)-invariant measures supported on the left diagram is the
Dirac mass supported on the constant 0 configuration. However there are

nontrivial measures supported on the right diagram.
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Nontrivial jointly invariant substitutional measures

Theorem (Cobham’s theorem)
A sequence is k-automatic if and only if it is the coding of a length k
substitution.

Given a substitution θ : Fp → Fp
p, we write θ(a) = θ0(a) · · · θp−1(a). We

say that θ is bijective if, for each 0 ≤ i ≤ p − 1, {θi (a) : a ∈ Fp} = Fp.

Example
θ(0) = 001, θ(1) = 112, and θ(2) = 220 is bijective. If W ⊂ Fp

p is a word
containing all letters, then θ(i) := w + ip is bijective. We call θ a rotation.

Theorem (Rowland-Y, 2018)

Let Φ : FZ
p → FZ

p be a linear cellular automaton whose generating
polynomial has L terms, and let u ∈ FZ

p be a θ-fixed point of a rotational
substitution. If p is not a divisor of L, STΦ(u) supports nontrivial
(σ,Φ)-invariant measures.
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Dependance on p: Φ Ledrappier & p = 2
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Dependance on p: Φ Ledrappier & p = 3
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Conclusions

We have new nontrivial measures that are jointly (σ,Φ) invariant. We
suspect that there are many, but we need conditions on Φ and the
initial conditions which would guarantee uniform recurrence of the
STDs we generate.
What is the relationship between our measures and the measures
arising from Intersection sets as defined by Kitchens, Schmidt,
Einsiedler?
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