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Introduction

Unification problem in a logical system L
I Given a formula ψ(x1, . . . , xn)

I Determine whether there exists formulas ϕ1, . . ., ϕn such
that ψ(ϕ1, . . . , ϕn) is in L

Admissibility problem in a logical system L
I Given a rule of inference ϕ1(x1,...,xn), ..., ϕm(x1,...,xn)

ψ(x1,...,xn)

I Determine whether for all formulas χ1, . . ., χn, if
ϕ1(χ1, . . . , χn), . . ., ϕm(χ1, . . . , χn) are in L then
ψ(χ1, . . . , χn) is in L



Introduction
Why unification?

Algebraic semantics of classical propositional logic
Boolean algebras (A,0A,1A,−A,∪A,∩A)

I Given a finite set {(ϕi , ψi) : i = 1 . . . n} of pairs of formulas
I Determine if there exists a substitution σ such that

I |=BA σ(ϕi ) = σ(ψi ) for all i = 1 . . . n
I |=BA σ(ϕi )↔ σ(ψi ) for all i = 1 . . . n

Algebraic semantics of intuitionistic propositional logic
Heyting algebras (A,0A,1A,∪A,∩A,→A)

I Given a finite set {(ϕi , ψi) : i = 1 . . . n} of pairs of formulas
I Determine if there exists a substitution σ such that

I |=HA σ(ϕi ) = σ(ψi ) for all i = 1 . . . n
I |=HA σ(ϕi )↔ σ(ψi ) for all i = 1 . . . n



Introduction
Why unification?

Description logic
Given concept definitions C(x1, . . . , xn) and D(x1, . . . , xn)

I Determine whether there are some redundancies between
C(x1, . . . , xn) and D(x1, . . . , xn)

I Solve C(x1, . . . , xn) ≡ D(x1, . . . , xn)

Epistemic planning
Given variable-free epistemic formulas ϕ(p1, . . . ,pm) and
ψ(p1, . . . ,pm)

I Determine whether there exists a public announcement χ
such that |= ϕ→ 〈χ!〉ψ

I Solve |= ϕ→ 〈x!〉ψ



Introduction

If L is consistent then the following are equivalent:
I Formula ϕ(x1, . . . , xn) is unifiable
I Rule ϕ(x1,...,xn)

⊥ is non-admissible

If L is finitary then the following are equivalent:
I Rule ϕ1(x1,...,xn),...,ϕm(x1,...,xn)

ψ(x1,...,xn)
is admissible

I Formulas ψ(χ1, . . . , χn) is in L for each maximal unifiers
(χ1, . . . , χn) of formulas ϕ1(x1, . . . , xn), . . . , ϕm(x1, . . . , xn)



Introduction

Unification: some examples

I The formula (x → p) ∧ (q → y) is unifiable in CPL
I The formula �¬x ∨�x is unifiable in modal logic K

In Classical Logic

I Unification is equivalent to satisfiability
I Why ? Use the inference rule of Uniform Substitution

In Modal Logic

I Unification in S4, S5, etc is not equivalent to satisfiability
I Why ? Consider the formula ♦x ∧ ♦¬x and use the

inference rule of Uniform Substitution



Introduction

About Classical Propositional Logic
Classical Propositional Logic is structurally complete
I Thus, admissibility in Classical Propositional Logic is

decidable

About intermediate logics
Rybakov (1981): If L is an intermediate logic then the
following are equivalent
I Rule R is admissible in L
I The modal translation of rule R is admissible in the

greatest modal companion of L
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Rybakov (1982)
I The admissibility problem in extensions of S4.3 is

decidable
Rybakov (1984)
I The admissibility problem in S4 is decidable

Chagrov (1992)
I There exists a decidable normal modal logic with an

undecidable admissibility problem
Wolter and Zakharyaschev (2008)
I The unification problem for any normal modal logic

between KU and K 4U is undecidable
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Definitions

Let L be a propositional logic
Substitutions
I σ: variable x 7→ formula σ(x)

Applying substitutions to formulas
I σ(ϕ(x1, . . . , xn)) = ϕ(σ(x1), . . . , σ(xn))

Composition of substitutions
I σ ◦ τ : variable x 7→ formula τ(σ(x))

Equivalence relation between substitutions
I σ 'L τ iff for all variables x , σ(x)↔ τ(x) ∈ L
I “σ and τ are L-equivalent”

Partial order between substitutions
I σ �L τ iff there exists a substitution µ such that σ ◦ µ 'L τ

I “σ is less specific, more general than τ in L”



Definitions

Let L be a propositional logic
Unifiers
I A substitution σ is a unifier of a formula ϕ iff σ(ϕ) ∈ L

Complete sets of unifiers
I A set Σ of unifiers of a formula ϕ is complete iff for all

unifiers τ of ϕ, there exists a unifier σ of ϕ in Σ such that
σ �L τ

Important questions
I Given a formula, has it a unifier?
I If so, has it a minimal complete set of unifiers?
I If so, how large is this set? Is this set effectively calculable?



I Definitions
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Boolean unification

Syntax
I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ)

Abbreviations for >, ∧, etc
I As usual

Examples of Boolean unification problems
I (x ↔ y)↔ (x ∨ y)

I (x → y) ∧ (¬x → z)

I (x → p) ∧ (q → y)



Boolean unification

Proposition:
Without parameters, Boolean unification is NP-complete
I ϕ(x̄) is CPL-unifiable⇐⇒ ∃x̄ϕ(x̄) is QBF -valid

With parameters, Boolean unification is ΠP
2 -complete

I ϕ(p̄, x̄) is CPL-unifiable⇐⇒ ∀p̄∃x̄ϕ(p̄, x̄) is QBF -valid
Baader (1998)



Boolean unification

Projective formulas
I A formula ϕ is said to be projective iff it has a unifier σ

such that ϕ→ (σ(x)↔ x) is in CPL
Any unifier σ of ϕ satisfying the above condition is called a
projective unifier of ϕ

Lemma: Projective unifiers are closed under compositions

Lemma: Projective unifiers are most general unifiers



Boolean unification

Lemma: Unifiable formulas are projective
Proof: Consider a unifier σ of ϕ
I Let ε be the substitution such that
ε(x) = (ϕ ∧ x) ∨ (¬ϕ ∧ σ(x))

I Fact: ε is a projective unifier of ϕ

Proposition: Boolean unification is unitary, i.e. every unifiable
formula has a most general unifier

Remarks about ε
I ε is the so-called “Löwenheim substitution”
I If σ is atom-free then ε can be defined by

I ε(x) = ϕ ∧ x when σ(x) = ⊥
I ε(x) = ϕ→ x when σ(x) = >
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Modal unification

Syntax
I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ

Abbreviation
I ♦ϕ ::= ¬�¬ϕ

Examples of modal unification problems
I �¬x ∨�x
I x → �x
I (x → p) ∧ (x → �(p → x))



Modal unification

Semantics
I Frame: directed graph F = (W ,R)

I Models:M = (W ,R,V ) where V : x ,p 7→ V (x),V (p) ⊆W
Truth conditions in a model
I M, s |= x iff s ∈ V (x) andM, s |= p iff s ∈ V (p)

I M, s |= �ϕ iff ∀t ∈W , if sRt thenM, t |= ϕ

Validity in a frame
I ϕ is valid in frame F iff ϕ is true at every node of every

model based on F
Normal modal logic L determined by a class C of frames
I Set of all formulas that are valid in the frames of C



Modal unification

Lemma: The unification problem is trivially decidable
(NP-complete) for any normal modal logic containing ♦>
I KD, KT , S4, S4.3, S5

— Rybakov 1984, 1997: The unification and admissibility
problems are decidable for intuitionistic logic, GL and S4
— Jer̆ábek 2005, 2007: The admissibility problem is
coNEXPTIME-complete for intuitionistic logic, GL and S4
— Chagrov 1992: Only one — rather artificial — example of a
decidable unimodal logic for which the admissibility problem is
undecidable
— Wolter and Zakharyaschev 2008: The unification problem
for modal logics between Ku and K 4u is undecidable



Modal unification

The unification and admissibility problems for K itself . . .
I . . . still remain open

Nothing is known about
I The decidability status of the unification and admissibility

problems for
I Basic modal logic K
I Various multimodal logics
I Various hybrid logics
I Various description logics
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Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic and ϕ be a formula

An L-unifier of ϕ is a substitution σ such that
I σ(ϕ) ∈ L

We shall say that ϕ is of type unitary (1) for L iff
I There exists a complete minimal set Σ of L-unifiers of ϕ
I Card(Σ) = 1

Example in CPL: (x → p) ∧ (q → y) is unitary
I σ(x) = p ∧ x and σ(y) = q ∨ y



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic and ϕ be a formula

An L-unifier of ϕ is a substitution σ such that
I σ(ϕ) ∈ L

We shall say that ϕ is of type finitary (ω) for L iff
I There exists a complete minimal set Σ of L-unifiers of ϕ
I Card(Σ) 6= 1 but Σ is finite

Example in IPL: x ∨ ¬x is finitary
I σ(x) = >
I τ(x) = ⊥



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic and ϕ be a formula

An L-unifier of ϕ is a substitution σ such that
I σ(ϕ) ∈ L

We shall say that ϕ is of type infinitary (∞) for L iff
I There exists a complete minimal set Σ of L-unifiers of ϕ
I Σ is infinite

No known example of an infinitary formula in modal logics



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic and ϕ be a formula

An L-unifier of ϕ is a substitution σ such that
I σ(ϕ) ∈ L

We shall say that ϕ is of type nullary (0) for L iff
I There exists no complete minimal set of L-unifiers of ϕ

Example in K: x → �x is nullary
I σ>(x) = >
I σk (x) = �<kx ∧�⊥



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic and ϕ be a formula

An L-unifier of ϕ is a substitution σ such that
I σ(ϕ) ∈ L

We shall say that ϕ is of type nullary (0) for L iff
I There exists no complete minimal set of L-unifiers of ϕ

Example in K: �¬x ∨�x is finitary
I σ(x) = >
I τ(x) = ⊥



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic

We shall say that L is of type unitary iff
I Every L-unifiable formula is unitary

We shall say that L is of type finitary iff
I Every L-unifiable formula is unitary or finitary
I There are finitary L-unifiable formulas

Examples
I Unification in classical propositional logic is unitary
I Unification in intuitionistic propositional logic is finitary



Unification types in modal logics
Unification types in propositional logic

Let L be a propositional logic

We shall say that L is of type infinitary iff
I Every L-unifiable formula is unitary or finitary or

infinitary
I There are infinitary L-unifiable formulas

We shall say that L is of type nullary iff
I There are nullary L-unifiable formulas

Example
I No known example of an infinitary modal logic
I Unification in modal logic K is nullary



Unification types in modal logics
Unification in S5

Modal logic S5
I Syntax

I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ
I Abbreviations

I ♦ϕ ::= ¬�¬ϕ
I Semantics

I Frame: partition F = (W ,R), i.e. R is an equivalence
relation

I Model:M = (W ,R,V ) where V : x ,p 7→ V (x),V (p) ⊆W
I Truth conditions in a modelM = (W ,R,V )

I M, s |= x iff s ∈ V (x) andM, s |= p iff s ∈ V (p)
I M, s |= �ϕ iff ∀t ∈W , if sRt thenM, t |= ϕ



Unification types in modal logics
Unification in S5

Projective formulas
I A formula ϕ is said to be projective iff it has a unifier σ

such that �ϕ→ (σ(x)↔ x) is in S5
Any unifier σ of ϕ satisfying the above condition is called a
projective unifier of ϕ

Lemma Projective unifiers are closed under compositions

Lemma Projective unifiers are most general unifiers



Unification types in modal logics
Unification in S5

Lemma Unifiable formulas are projective
Proof: Consider a unifier σ of ϕ
I Let ε be the substitution such that
ε(x) = (�ϕ ∧ x) ∨ (¬�ϕ ∧ σ(x))

I Fact: ε is a projective unifier of ϕ

Proposition S5 unification is unitary, i.e. every unifiable
formula has a most general unifier

Remarks about ε
I ε is the Löwenheim substitution
I If σ is atom-free then ε can be defined by

I ε(x) = �ϕ ∧ x when σ(x) = ⊥
I ε(x) = �ϕ→ x when σ(x) = >



Unification types in modal logics
Unification in K 4

Modal logic K 4
I Syntax

I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ
I Abbreviations

I ♦ϕ ::= ¬�¬ϕ
I �+ϕ ::= ϕ ∧�ϕ

I Semantics
I Frame: directed graph F = (W ,R) where R is transitive
I Model:M = (W ,R,V ) where V : x ,p 7→ V (x),V (p) ⊆W

I Truth conditions in a modelM = (W ,R,V )
I M, s |= x iff s ∈ V (x) andM, s |= p iff s ∈ V (p)
I M, s |= �ϕ iff ∀t ∈W , if sRt thenM, t |= ϕ



Unification types in modal logics
Unification in K 4

Proposition (Rybakov 1984, 1997) K 4-unification is
decidable

Proposition (Ghilardi 2000) K 4-unification is finitary, i.e.
I For all formulas ϕ(x1, . . . , xn), the cardinality of a minimal

complete set of K 4-unifiers is finite



Unification types in modal logics
Unification in K 4

Ghilardi (2000): A formula ϕ(x1, . . . , xn) is said to be
projective iff there exists a substitution σ such that

1. σ is a K 4-unifier of ϕ
2. �+ϕ→ (xi ↔ σ(xi)) ∈ K 4 for each i such that 1 ≤ i ≤ n

Wroński (1995): A formula ϕ(x1, . . . , xn) is said to be
transparent iff there exists a substitution σ such that

1. σ is a K 4-unifier of ϕ
2. for all K 4-unifiers τ of ϕ, τ(xi)↔ τ(σ(xi)) ∈ K 4 for each i

such that 1 ≤ i ≤ n



Unification types in modal logics
Unification in K 4

Ghilardi (2000): A formula ϕ(x1, . . . , xn) is said to be
projective iff there exists a substitution σ such that

1. σ is a K 4-unifier of ϕ
2. �+ϕ→ (xi ↔ σ(xi)) ∈ K 4 for each i such that 1 ≤ i ≤ n

For all A ⊆ {1, . . . ,n}, let θA
ϕ be the substitution defined by

I θA
ϕ(xi) = �+ϕ ∧ xi if i 6∈ A

I θA
ϕ(xi) = �+ϕ→ xi if i ∈ A

Remark: The substitution θA
ϕ satisfies condition 2



Unification types in modal logics
Unification in K 4

Ghilardi (2000): A formula ϕ(x1, . . . , xn) is said to be
projective iff there exists a substitution σ such that

1. σ is a K 4-unifier of ϕ
2. �+ϕ→ (xi ↔ σ(xi)) ∈ K 4 for each i such that 1 ≤ i ≤ n

For all A ⊆ {1, . . . ,n}, let θA
ϕ be the substitution defined by

I θA
ϕ(xi) = �+ϕ→ xi if i ∈ A

I θA
ϕ(xi) = �+ϕ ∧ xi if i 6∈ A

Given an arbitrary enumeration A1, . . . ,A2n of the subsets of
{1, . . . ,n}, let θϕ = θA1

ϕ ◦ . . . ◦ θ
A2n
ϕ



Unification types in modal logics
Unification in K 4

Proposition For all formulas ϕ(x1, . . . , xn), if d = depth(ϕ) and
N is the number of non-∼d -equivalent models over x1, . . . , xn,
the following statements are equivalent:
I θϕ

2N is a K 4-unifier of ϕ
I ϕ is projective

I Ghilardi, S.: Best solving modal equations. Annals of Pure
and Applied Logic 102 (2000) 183–198.

Corollary It is decidable to determine whether a given formula
ϕ is projective



Unification types in modal logics
Unification in K 4

Lemma For all formulas ϕ and for all substitutions σ, if σ is a
K 4-unifier of ϕ
I There exists a formula ψ, depth(ψ) ≤ depth(ϕ), such that

I ψ is projective
I σ is a K 4-unifier of ψ
I �+ψ → ϕ ∈ K 4

Proposition (Ghilardi 2000) K 4-unification is finitary, i.e.
I For all formulas ϕ(x1, . . . , xn), the cardinality of a minimal

complete set of K 4-unifiers is finite



Unification types in modal logics
Unification in K

Modal logic K
I Syntax

I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ
I Abbreviations

I ♦ϕ ::= ¬�¬ϕ
I �<nϕ ::= �0ϕ ∧ . . . ∧�n−1ϕ for each n ∈ N

I Semantics
I Frame: directed graph F = (W ,R)
I Model:M = (W ,R,V ) where V : x ,p 7→ V (x),V (p) ⊆W

I Truth conditions in a modelM = (W ,R,V )
I M, s |= x iff s ∈ V (x) andM, s |= p iff s ∈ V (p)
I M, s |= �ϕ iff ∀t ∈W , if sRt thenM, t |= ϕ



Unification types in modal logics
Unification in K

Open question Is K -unification decidable?

K -unification is not unitary since
I σ>(x) = > and σ⊥(x) = ⊥ constitute a minimal complete

set of unifiers in K of the formula �¬x ∨�x

K -unification is nullary, i.e.
I There exists a formula ϕ such that there exists no

complete minimal set of K -unifiers of ϕ



Unification types in modal logics
Unification in K

Method (Jer̆ábek, 2014) Study the K -unifiers of
I x → �x

Consider the following substitutions
I σn(x) = �<nx ∧�n⊥ for each n ∈ N
I σ>(x) = >

Lemma
I σn is a K -unifier of x → �x for each n ∈ N
I σ> is a K -unifier of x → �x

Lemma
I σn �K σm iff m ≤ n



Unification types in modal logics
Unification in K

Proposition (Jer̆ábek, 2014) For all formulas ϕ, depth(ϕ) = n,
I If ϕ→ �ϕ ∈ K then either ϕ→ �n⊥ ∈ K , or ϕ ∈ K

Corollary The following substitutions form a complete set of
K -unifiers for the formula x → �x
I σn(x) = �<nx ∧�n⊥ for each n ∈ N
I σ>(x) = >

Corollary K -unification is nullary



Unification types in modal logics
Unification in other modal logics

Intuitionistic propositional logic — IPL
Ghilardi (1999): for every IPL-unifiable formula ϕ, one can find
a finite number of projective ψi such that
I ψi → ϕ is in IPL
I every IPL-unifier for ϕ is also an IPL-unifier for one of the ψi

Logic of weak excluded middle — KC
Ghilardi (1999):
I KC is unitary
I KC is the least intermediate logic having unitary unification



Unification types in modal logics
Unification in other modal logics

Logic of Gödel and Dummett — LC
Wroński (2008):
I An intermediate logic L has projective unification iff LC ⊆ L

Extensions of S4
Dzik and Wojtylak (2011):
I In all extensions of S4.3, unifiable formulas have projective

unifiers
I Extensions of S4 in which all unifiable formulas have

projective unifiers must contain S4.3



Unification types in modal logics
Unification in other modal logics

Extensions of K 4
Ghilardi and Sacchetti (2004):
I Define the abbreviations

I �+ϕ := (�ϕ ∧ ϕ)
I ♦+ϕ := (♦ϕ ∨ ϕ)

I K 4.2+ is K 4 + ♦+�+ϕ→ �+♦+ϕ

I An extension L of K 4 has filtering unification iff K 4.2+ ⊆ L

Splitting pair (L(f2),S4.2)
Dzik (2006): For all extensions L of S4
I Either L ⊆ L(f2) or S4.2 ⊆ L
I If L ⊆ L(f2) then L is not unitary
I If S4.2 ⊆ L then L is unitary or nullary
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Recent advances

KD = K + ♦>
KD is nullary
I (x → p) ∧ (x → �(p → x))

B. and Gencer (2018)

KT = K +�ϕ→ ϕ

KT is nullary
I (x → p) ∧ (x → �(q → y)) ∧ (y → q) ∧ (y → �(p → x))

B. (to appear)

KB = K + ϕ→ �♦ϕ
KB is nullary
I x → (¬p∧¬q → �(p∧¬q → �(¬p∧q → �(¬p∧¬q → x))))

B. and Gencer (submitted for publication)



Recent advances

Alt1 = K + ♦ϕ→ �ϕ
I Alt1 is nullary for unification
I The unification problem (without parameters) in Alt1 is

decidable (in PSPACE)

B. and Tinchev (2016)

Normal extensions of K 5 = K + ♦ϕ→ �♦ϕ
I These modal logics are unitary for unification

K +�k⊥ for k ≥ 2
I These modal logics are finitary for unification

B., Rostamigiv and Tinchev (submitted for publication)



Recent advances

Unification in Dynamic Epistemic Logics
Syntax
I ϕ ::= x | p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | Kaϕ | [ϕ!]ψ

Abbreviations
I K̂aϕ ::= ¬Ka¬ϕ
I 〈ϕ!〉ψ ::= ¬[ϕ!]¬ψ

Readings
I Kaϕ: “agent a knows that ϕ holds”
I [ϕ!]ψ: “if ϕ holds then ψ will hold after ϕ is announced”
I K̂aϕ: “it is compatible with a’s knowledge that ϕ holds”
I 〈ϕ!〉ψ: “ϕ holds and ψ will hold after ϕ is announced”



Recent advances

A simple example of unification problem
Public announcements : Ka,Kb, . . . are S5 modalities
I P1 = ϕ→ 〈x!〉Kaψ — with ψ Boolean formula
I P2 = (ϕ→ x) ∧ (ϕ→ Ka(x → ψ))

I P3 = (ϕ→ x) ∧ (K̂aϕ→ (x → ψ))

I P4 = (ϕ→ x) ∧ (x → (K̂aϕ→ ψ))

I Necessary condition: |= ϕ→ (K̂aϕ→ ψ), i.e. |= ϕ→ ψ

I Unifier of P4:
I σ(x) = ψ

I Most general unifier of P4:
I ε(x) = (P4 ∧ x) ∨ (¬P4 ∧ σ(x))
I ε(x) = ((K̂aϕ→ ψ) ∧ x) ∨ (ϕ ∧ ¬x)



Recent advances

Other examples of unification problems

I ϕ→ 〈x!〉Kaψ

I ϕ→ 〈x!〉(Ka1ψ1 ∧ . . . ∧ Kanψn)

I ϕ→ 〈x!〉Ka1 . . .Kanψ

I ϕ→ 〈Kbx!〉Kaψ

I ϕ→ 〈Kbx!〉(Ka1Kbψ1 ∧ . . . ∧ Ka1K̂bχ1 ∧ . . .)



Recent advances

A simple example of unification problem
Lies : Ka,Kb, . . . are KD45 modalities
I P1 = ϕ→ 〈x!〉Kaψ — with ψ Boolean formula
I P2 = (ϕ→ ¬x) ∧ (ϕ→ Ka(x → ψ))
I Unifier of P2:
I σ(x) = ⊥
I Most general unifier of P2:

I ε(x) = ???



Conclusion
Some open problems

Decidability of

I parameter-free unification in modal logic K , KB ?
I unification with parameters in modal logics KD, KDB ?
I unification with parameters in modal logics KT , KTB ?
I unification with parameters in modal logics Alt1, Alt2 ?
I unification in implication fragments ?

Type of

I KB, KD, KDB, KT , KTB for parameter-free unification ?
I S5⊗ S5 and other fusions of modal logics ?
I S4.2× S4.2 and other products of modal logics ?
I K +�k⊥ and other locally tabular modal logics ?
I unification in implication fragments ?



Thank you!
Questions?


