La théorie des jeux en synthèse assistée par ordinateur

Véronique Bruyère
UMONS Belgium

GDR 2019

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

6 Conclusion

Topic

Reactive systems
■ System embedded into an uncontrollable environment

- It must satisfy some property against any behavior of the environment
■ How to automatically design a correct controller for the system?

Topic

Reactive systems

■ System embedded into an uncontrollable environment

- It must satisfy some property against any behavior of the environment
■ How to automatically design a correct controller for the system?

Example

■ System: autonomous robotized lawnmower Environment: weather, cat

- The lawnmower must cut the grass in any conditions
- How to design a correct lawnmower
 controller?

Topic

Reactive systems

■ System embedded into an uncontrollable environment

- It must satisfy some property against any behavior of the environment
■ How to automatically design a correct controller for the system?

Modelization
■ Two-player zero-sum game played on a finite directed graph

- Property = objective for the system
- Synthesis of a controller = construction of a winning strategy
game flayed on a graph

This talk

- General context
- Focus on two-player zero-sum games for the synthesis of controllers
- Extension to multiplayer non zero-sum games in the last part of the talk
- Introductory survey with some classical results and some recent UMONS results

This talk

■ General context
■ Focus on two-player zero-sum games for the synthesis of controllers

- Extension to multiplayer non zero-sum games in the last part of the talk
- Introductory survey with some classical results and some recent UMONS results
- Algorithmic problems
- Does there exist a correct controller?
- Can we construct it?

■ Is it possible to design a simple controller?

This talk

■ General context
■ Focus on two-player zero-sum games for the synthesis of controllers

- Extension to multiplayer non zero-sum games in the last part of the talk
- Introductory survey with some classical results and some recent UMONS results
- Algorithmic problems
- Does there exist a correct controller?
- Can we construct it?
- Is it possible to design a simple controller?

■ More details
■ in my survey "Computer Aided Synthesis: a Game Theoretic Approach" in the Proceedings of DLT 2017 [Bru17]
■ in the book chapter "Graph Games and Reactive Synthesis" [BCJ18]
■ in the book chapter "Solution Concepts and Algorithms for Infinite Multiplayer Games" [GU08]

Introductory example

Lawnmower [Ran12]: modeled as a game played on a weighted graph

Introductory example

Lawnmower [Ran12]: modeled as a game played on a weighted graph

■ Vertices: circles for the lawnmower, squares for the environment
■ Edges: actions labeled by triples denoting changes in (solar battery, fuel level, elapsed time)

Introductory example

Lawnmower [Ran12]: modeled as a game played on a weighted graph

Specification as objectives
■ Büchi objective : grass must be cut infinitely often

- Energy objective : battery and fuel must never drop below 0
- Mean-payoff objective : average time per action must be less than 10 in the long run

Introductory example

Lawnmower [Ran12]: modeled as a game played on a weighted graph

Controller as the following strategy

- If sunny, mow slowly
- If cloudy
- If solar battery ≥ 1, mow on battery
- otherwise, if fuel level ≥ 2, mow on fuel
- otherwise, rest at the base

1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

6 Conclusion

Basic model

Definition

Two-player zero-sum game $G=\left(V, V_{1}, V_{2}, E, v_{0}\right)$:
\square (V, E) finite directed graph (with no deadlock)
$\square\left(V_{1}, V_{2}\right)$ partition of V with V_{i} controlled by player $i \in\{1,2\}$

- initial vertex v_{0}

The players play in a turn-based way: they decide which edge (v, v^{\prime}) to follow for each v that they control

Basic model

Definition

Two-player zero-sum game $G=\left(V, V_{1}, V_{2}, E, v_{0}\right)$:
$\square(V, E)$ finite directed graph (with no deadlock)

- $\left(V_{1}, V_{2}\right)$ partition of V with V_{i} controlled by player $i \in\{1,2\}$
- initial vertex v_{0}

The players play in a turn-based way: they decide which edge (v, v^{\prime}) to follow for each v that they control

Paths
■ Play: infinite path from v_{0}

$$
\rho=\rho_{0} \rho_{1} \ldots \in V^{\omega} \text { in } G
$$

■ History: prefix h of a play

Player $1 \bigcirc$, Player $2 \square$

Basic model

Objective: set $\Omega \subseteq V^{\omega}$ of plays
Zero-sum game: objective Ω for player 1 and opposite objective $V^{\omega} \backslash \Omega$ for player 2

Basic model
Objective: set $\Omega \subseteq V^{\omega}$ of plays
Zero-sum game: objective Ω for player 1 and opposite objective $V^{\omega} \backslash \Omega$ for player 2

Definition

Some classical ω-regular objectives are:
■ Reachability objective: visit a vertex of $U \subseteq V$ at least once

- Büchi objective: visit a vertex of U infinitely often

■ Safety, Co-Büchi, Muller, Rabin, Streett

Basic model
Objective: set $\Omega \subseteq V^{\omega}$ of plays
Zero-sum game: objective Ω for player 1 and opposite objective $V^{\omega} \backslash \Omega$ for player 2

Definition

Some classical ω-regular objectives are:
■ Reachability objective: visit a vertex of $U \subseteq V$ at least once

- Büchi objective: visit a vertex of U infinitely often

■ Safety, Co-Büchi, Muller, Rabin, Streett
Given a coloring $c: V \rightarrow \mathbb{N}$

- Parity objective: the maximum color seen infinitely often is even

Strategies

Strategy for player i :

function $\sigma_{i}: V^{*} V_{i} \rightarrow V$ such that $\sigma_{i}(h v)=v^{\prime}$ with $\left(v, v^{\prime}\right) \in E$

Unravelling of G from initial vertex v_{0}

Strategies

Strategy for player i :
function $\sigma_{i}: V^{*} V_{i} \rightarrow V$ such that $\sigma_{i}(h v)=v^{\prime}$ with $\left(v, v^{\prime}\right) \in E$

Unravelling of G from initial vertex v_{0}

Game G

Strategies

Strategy for player i :
function $\sigma_{i}: V^{*} V_{i} \rightarrow V$ such that $\sigma_{i}(h v)=v^{\prime}$ with $\left(v, v^{\prime}\right) \in E$

Positional strategy: when $\sigma_{i}(h v)=\sigma(v)$

Unravelling of G from initial vertex v_{0}

Game G

Finite-memory strategy: when $\sigma_{i}(h v)$ only needs a finite information out of $h v$ recorded in a finite-state machine

Strategies

Winning strategy for player i : ensure his objective against any strategy of the other player

A game is determined from initial vertex v_{0} when

- either player 1 is winning for Ω from v_{0}
- or player 2 is winning for $V^{\omega} \backslash \Omega$ from v_{0}

Strategies

Winning strategy for player i : ensure his objective against any strategy of the other player

A game is determined from initial vertex v_{0} when
\square either player 1 is winning for Ω from v_{0}
■ or player 2 is winning for $V^{\omega} \backslash \Omega$ from v_{0}

Example
Parity game: Player 1 is winning from every vertex with a positional strategy

■ Either player 2 eventually stays at v_{2} \rightarrow max color seen infinitely often $=0$

- Or he infinitely often visits v_{3}
\rightarrow max color seen infinitely often $=2$

Martin's theorem

Theorem [Mar75]

Every game with Borel objectives is determined

Martin's theorem

Theorem [Mar75]

Every game with Borel objectives is determined

■ Need of the axiom of choice to exhibit a non-determined game
■ No information about the winning strategies

Martin's theorem

Theorem [Mar75]

Every game with Borel objectives is determined

- Need of the axiom of choice to exhibit a non-determined game
- No information about the winning strategies

Corollary

Every game with ω-regular objectives is determined

Martin's theorem

Theorem [Mar75]

Every game with Borel objectives is determined

■ Need of the axiom of choice to exhibit a non-determined game

- No information about the winning strategies

Corollary

Every game with ω-regular objectives is determined
Algorithmic questions
■ Who is the winner from initial vertex v_{0} ?

- Complexity class of this decision problem?

■ Can we construct a winning strategy for the winner?
■ What kind of winning strategy? positional, finite-memory?

Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

- Reachability objective: emptiness of automata on finite words

■ Büchi objective: emptiness of Büchi automata on infinite words

Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

■ Reachability objective: emptiness of automata on finite words
■ Büchi objective: emptiness of Büchi automata on infinite words
Finite-memory winning strategy iff the winning play is eventually periodic

Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

■ Reachability objective: emptiness of automata on finite words
■ Büchi objective: emptiness of Büchi automata on infinite words
Finite-memory winning strategy iff the winning play is eventually periodic

- reachable cycle in the graph
- reachable simple cycle for positional strategies

Algorithmic results for one-player games

Classical question in automata theory: Player 1 wins iff there exists a play satisfying the objective

- Reachability objective: emptiness of automata on finite words

■ Büchi objective: emptiness of Büchi automata on infinite words
Finite-memory winning strategy iff the winning play is eventually periodic

- reachable cycle in the graph
- reachable simple cycle for positional strategies

Example

■ Positional winning strategies for Reachability and Büchi objectives

- Needs of memory for Muller objective
- visit all the vertices of $\left\{v_{0}, v_{1}, v_{3}\right\}$ infinitely often

- Necessity to alternate

Algorithmic results for two-player games

Results [Bee80, EJ91, Imm81, Hor08], see also [GTW02, Zie98]

- Decision problem: who is the winner from initial vertex v_{0} ?
- With what kind of winning strategy?

	Reach	Büchi	Parity	Muller
Complexity	P-complete	NP \cap co-NP	P-complete	
Player 1 strategy	positional			finite-memory
Player 2 strategy	positional			finite-memory

Algorithmic results for two-player games

Results [Bee80, EJ91, Imm81, Hor08], see also [GTW02, Zie98]
■ Decision problem: who is the winner from initial vertex v_{0} ?

- With what kind of winning strategy?

	Reach	Büchi	Parity	Muller
Complexity	P-complete	NP \cap co-NP	P-complete	
Player 1 strategy	positional			finite-memory
Player 2 strategy	positional			finite-memory

- Remember the previous examples
- More information on the proofs on slide 21

Algorithmic results for two-player games

Results [Bee80, EJ91, Imm81, Hor08], see also [GTW02, Zie98]
■ Decision problem: who is the winner from initial vertex v_{0} ?

- With what kind of winning strategy?

	Reach	Büchi	Parity	Muller
Complexity	P-complete	NP \cap co-NP	P-complete	
Player 1 strategy	positional			finite-memory
Player 2 strategy	positional			finite-memory

- Remember the previous examples
- More information on the proofs on slide 21

Major open problem: can we solve Parity games in P?
Recent breakthrough with a quasi-polynomial time algorithm [CJK ${ }^{+}$17]

1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

6 Conclusion

Basic model

Extension with weights on the edges

Definition

Two-player zero-sum game $G=\left(V, V_{1}, V_{2}, E, v_{0}, w\right)$ as before, with: - $w: E \rightarrow \mathbb{Z}$ weight function

Basic model

Extension with weights on the edges

Definition

Two-player zero-sum game $G=\left(V, V_{1}, V_{2}, E, v_{0}, w\right)$ as before, with:

- $w: E \rightarrow \mathbb{Z}$ weight function

Classical payoff $f(\rho)$ of a play $\rho=\rho_{0} \rho_{1} \rho_{2} \ldots$:
$■ \operatorname{Sup}(\rho)=\sup _{n \in \mathbb{N}} w\left(\rho_{n}, \rho_{n+1}\right)$
■ $\operatorname{LimSup}(\rho)=\limsup w\left(\rho_{n}, \rho_{n+1}\right)$

- Mean-payoff $\overline{\mathrm{MP}}(\rho)=\limsup \frac{1}{n} \sum_{k=0}^{n-1} w\left(\rho_{k}, \rho_{k+1}\right)$

■ Discounted sum $\operatorname{Disc}^{\lambda}(\rho)=\sum_{k=0}^{\infty} w\left(\rho_{k}, \rho_{k+1}\right) \lambda^{n}$, where $\left.\lambda \in\right] 0,1[$

Basic model

Extension with weights on the edges

Definition

Two-player zero-sum game $G=\left(V, V_{1}, V_{2}, E, v_{0}, w\right)$ as before, with:

- $w: E \rightarrow \mathbb{Z}$ weight function

Classical payoff $f(\rho)$ of a play $\rho=\rho_{0} \rho_{1} \rho_{2} \ldots$:

- $\operatorname{Sup}(\rho)=\sup _{n \in \mathbb{N}} w\left(\rho_{n}, \rho_{n+1}\right)$
$■ \operatorname{LimSup}(\rho)=\limsup w\left(\rho_{n}, \rho_{n+1}\right)$
- Discounted sum $\operatorname{Disc}^{\lambda}(\rho)=\sum_{k=0}^{\infty} w\left(\rho_{k}, \rho_{k+1}\right) \lambda^{n}$, where $\left.\lambda \in\right] 0,1[$

Similar definitions with $\operatorname{Inf}(\rho), \operatorname{Lim} \operatorname{lnf}(\rho), \mathrm{MP}(\rho)$

Quantitative objectives

Example

$$
\text { play } \rho=\left(v_{0} v_{1}\right)^{\omega}
$$

- $\overline{\mathrm{MP}}(\rho)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} w\left(\rho_{k}, \rho_{k+1}\right)$

$$
\left(\frac{-1}{1}, \frac{-1}{2}, \frac{-2}{3}, \frac{-2}{4}, \frac{-3}{5}, \frac{-3}{6}, \ldots, \frac{-n}{2 n-1}, \frac{-n}{2 n}, \ldots\right) \rightarrow-\frac{1}{2}=\overline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}(\rho)
$$

$\square \operatorname{Disc}^{\lambda}(\rho)=\sum_{k=0}^{\infty} w\left(\rho_{k}, \rho_{k+1}\right) \lambda^{n}$, with $\lambda=\frac{1}{2}$
$-1-\lambda^{2}-\lambda^{4}-\lambda^{6} \ldots=-\frac{4}{3}$

Quantitative objectives

Example

$$
\text { play } \rho=\left(v_{0} v_{1}\right)^{\omega}
$$

$\square \overline{\mathrm{MP}}(\rho)=\limsup \sup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} w\left(\rho_{k}, \rho_{k+1}\right)$

$$
\left(\frac{-1}{1}, \frac{-1}{2}, \frac{-2}{3}, \frac{-2}{4}, \frac{-3}{5}, \frac{-3}{6}, \ldots, \frac{-n}{2 n-1}, \frac{-n}{2 n}, \ldots\right) \rightarrow-\frac{1}{2}=\overline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}(\rho)
$$

$\square \operatorname{Disc}^{\lambda}(\rho)=\sum_{k=0}^{\infty} w\left(\rho_{k}, \rho_{k+1}\right) \lambda^{n}$, with $\lambda=\frac{1}{2}$
$-1-\lambda^{2}-\lambda^{4}-\lambda^{6} \ldots=-\frac{4}{3}$
Lemma: If $\rho=h g^{\omega}$ is eventually periodic, then $\overline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}(\rho)=$ average weight of cycle g

Quantitative objectives

Example

$$
\text { play } \rho=\left(v_{0} v_{1}\right)^{\omega}
$$

$\square \overline{\mathrm{MP}}(\rho)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} w\left(\rho_{k}, \rho_{k+1}\right)$

$$
\left(\frac{-1}{1}, \frac{-1}{2}, \frac{-2}{3}, \frac{-2}{4}, \frac{-3}{5}, \frac{-3}{6}, \ldots, \frac{-n}{2 n-1}, \frac{-n}{2 n}, \ldots\right) \rightarrow-\frac{1}{2}=\overline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}(\rho)
$$

$\square \operatorname{Disc}^{\lambda}(\rho)=\sum_{k=0}^{\infty} w\left(\rho_{k}, \rho_{k+1}\right) \lambda^{n}$, with $\lambda=\frac{1}{2}$
$-1-\lambda^{2}-\lambda^{4}-\lambda^{6} \ldots=-\frac{4}{3}$
Lemma: If $\rho=h g^{\omega}$ is eventually periodic, then $\overline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}(\rho)=$ average weight of cycle g

Remark: For qualitative objectives, Boolean payoff $f(\rho) \in\{0,1\}$

Quantitative objectives

Definition

Classical quantitative objectives are:
■ Threshold problem: given a threshold $\mu \in \mathbb{Q}$:
■ Sup objective: ensure $\mu \leq \operatorname{Sup}(\rho)$

- Similarly for the other payoff functions LimSup, $\overline{\mathrm{MP}}, \ldots$

■ Constraint problem: given a rational interval $[\mu, \nu]$,

- ensure $\mu \leq \operatorname{Sup}(\rho) \leq \nu$

Quantitative objectives

Definition

Classical quantitative objectives are:
■ Threshold problem: given a threshold $\mu \in \mathbb{Q}$:
■ Sup objective: ensure $\mu \leq \operatorname{Sup}(\rho)$

- Similarly for the other payoff functions LimSup, MP, ...

■ Constraint problem: given a rational interval $[\mu, \nu]$,

- ensure $\mu \leq \operatorname{Sup}(\rho) \leq \nu$

Corollary of Martin's Theorem

Games with such quantitative objectives are determined
■ Sup, LimSup: ω-regular
■ $\overline{\mathrm{MP}}$, Disc ${ }^{\lambda}$: not ω-regular, but Borel

Quantitative objectives

Definition

Classical quantitative objectives are:
■ Threshold problem: given a threshold $\mu \in \mathbb{Q}$:
■ Sup objective: ensure $\mu \leq \operatorname{Sup}(\rho)$

- Similarly for the other payoff functions LimSup, MP, ...

■ Constraint problem: given a rational interval $[\mu, \nu]$,

- ensure $\mu \leq \operatorname{Sup}(\rho) \leq \nu$

Corollary of Martin's Theorem

Games with such quantitative objectives are determined
■ ensure $\mu \leq \operatorname{Sup}(\rho) \Leftrightarrow$ visit an edge with a weight $\geq \mu$ (Reachability)
■ ensure $\mu \leq \operatorname{LimSup}(\rho) \Leftrightarrow$ visit such an edge infinitely often (Büchi)

Algorithmic results for one-player games

Theorem [CDH10]

Polynomial time algorithm for the threshold problem, with positional winning strategies

More information on the proofs on slide 21

Algorithmic results for one-player games

Theorem [CDH10]

Polynomial time algorithm for the threshold problem, with positional winning strategies

More information on the proofs on slide 21

Theorem [HR14, UW11a]

For the constraint problem, polynomial time algorithm
■ Sup, Inf, LimSup, LimInf: positional winning strategies
■ $\overline{\mathrm{MP}}, \mathrm{MP}$: finite-memory winning strategies
Open for Disc ${ }^{\lambda}$

Algorithmic results for one-player games

Theorem [CDH10]

Polynomial time algorithm for the threshold problem, with positional winning strategies

More information on the proofs on slide 21

Theorem [HR14, UW11a]

For the constraint problem, polynomial time algorithm
■ Sup, Inf, LimSup, LimInf: positional winning strategies
■ $\overline{\mathrm{MP}}, \mathrm{MP}$: finite-memory winning strategies
Open for Disc ${ }^{\lambda}$
Example
Mean-payoff with $\mu=\nu=1$
Necessity to alternate

Algorithmic results for one-player games
Two related open problems:

Constraint problem for Disc ${ }^{\lambda}$

Given a rational interval $[\mu, \nu$], does there exist a play ρ such that $\mu \leq \operatorname{Disc}^{\lambda}(\rho) \leq \nu$?

Target discounted-sum (TDS) problem [BHO15]

Given four rational numbers a, b, t and $\lambda \in] 0,1[$, does there exist an infinite sequence $u=u_{0} u_{1} \ldots \in\{a, b\}^{\omega}$ such that $\sum_{n=0}^{\infty} u_{n} \lambda^{n}=t$?

Algorithmic results for one-player games

Two related open problems:

Constraint problem for Disc ${ }^{\lambda}$

Given a rational interval $[\mu, \nu$], does there exist a play ρ such that $\mu \leq \operatorname{Disc}^{\lambda}(\rho) \leq \nu$?

Target discounted-sum (TDS) problem [BHO15]

Given four rational numbers a, b, t and $\lambda \in] 0,1[$, does there exist an infinite sequence $u=u_{0} u_{1} \ldots \in\{a, b\}^{\omega}$ such that $\sum_{n=0}^{\infty} u_{n} \lambda^{n}=t$?

- TDS problem related to several open questions in mathematics and computer science [BHO15]
- related to numeration systems, i.e. to β-representations of real numbers [R5́7]
- TDS problem decidable when $a=0, b=1$ and $\lambda \geq \frac{1}{2}$ [R5́7]

Algorithmic results for two-player games

Threshold problem [BSV04, EM79, ZP96]

	Reach Sup	Büchi LimSup	Parity	$\overline{\mathrm{MP}}$	Disc $^{\lambda}$	Muller
Complexity	P-complete	$\mathrm{NP} \cap$ co-NP	P-complete			
Player 1 strategy	positional			finite-memory		
Player 2 strategy	positional			finite-memory		

Algorithmic results for two-player games

Threshold problem [BSV04, EM79, ZP96]

	Reach Sup	Büchi LimSup	Parity	$\overline{\mathrm{MP}}$	Disc $^{\lambda}$	Muller
Complexity	P-complete	NP \cap co-NP	P-complete			
Player 1 strategy	positional			finite-memory		
Player 2 strategy	positional			finite-memory		

■ Polynomial reductions: Parity games \rightarrow Mean-payoff games \rightarrow Discounted-sum games [Jur98, ZP96]

- Major open problem: can we solve Parity, Mean-payoff and Discounted-sum games in P?

Algorithmic results for two-player games

Threshold problem [BSV04, EM79, ZP96]

	Reach Sup	Büchi LimSup	Parity	$\overline{\mathrm{MP}}$	Disc $^{\lambda}$	Muller
Complexity	P-complete	$\mathrm{NP} \cap$ co-NP	P-complete			
Player 1 strategy	positional			finite-memory		
Player 2 strategy	positional			finite-memory		

■ Polynomial reductions: Parity games \rightarrow Mean-payoff games \rightarrow Discounted-sum games [Jur98, ZP96]

- Major open problem: can we solve Parity, Mean-payoff and Discounted-sum games in P?

Constraint problem [HR14, UW11a] Same results except
■ finite-memory strategies for $\overline{\mathrm{MP}}$

- open for Disc ${ }^{\lambda}$

Algorithmic results

Theorem [GZ04]

Let G be a weighted game. If the payoff function f is fairly mixing, i.e.:
1 f $(\rho) \leq f\left(\rho^{\prime}\right) \Rightarrow f(h \rho) \leq f\left(h \rho^{\prime}\right)$
$2 \min \left\{f(\rho), f\left(h^{\omega}\right)\right\} \leq f(h \rho) \leq \max \left\{f(\rho), f\left(h^{\omega}\right)\right\}$
${ }_{3} \min \left\{f\left(h_{0} h_{2} h_{4} \ldots\right), f\left(h_{1} h_{3} h_{5} \ldots\right), \inf _{i} f\left(h_{i}^{\omega}\right)\right\}$

$$
\leq f\left(h_{0} h_{1} h_{2} h_{3} \ldots\right) \leq \max \left\{f\left(h_{0} h_{2} h_{4} \ldots\right), f\left(h_{1} h_{3} h_{5} \ldots\right), \sup _{i} f\left(h_{i}^{\omega}\right)\right\}
$$

then both players have positional winning strategies for the threshold problem

Algorithmic results

Theorem [GZO4]

Let G be a weighted game. If the payoff function f is fairly mixing, i.e.:
$1 f(\rho) \leq f\left(\rho^{\prime}\right) \Rightarrow f(h \rho) \leq f\left(h \rho^{\prime}\right)$
$2 \min \left\{f(\rho), f\left(h^{\omega}\right)\right\} \leq f(h \rho) \leq \max \left\{f(\rho), f\left(h^{\omega}\right)\right\}$
$3 \min \left\{f\left(h_{0} h_{2} h_{4} \ldots\right), f\left(h_{1} h_{3} h_{5} \ldots\right), \inf _{i} f\left(h_{i}^{\omega}\right)\right\}$

$$
\leq f\left(h_{0} h_{1} h_{2} h_{3} \ldots\right) \leq \max \left\{f\left(h_{0} h_{2} h_{4} \ldots\right), f\left(h_{1} h_{3} h_{5} \ldots\right), \sup _{i} f\left(h_{i}^{\omega}\right)\right\}
$$

then both players have positional winning strategies for the threshold problem

■ Many applications: Reachability, Büchi, Parity, Sup, LimSup, Mean-payoff, Discounted-sum, ... (but not Muller)

- If the payoff function is prefix-independent, i.e. $f(\rho)=f(h \rho)$, then conditions 1 . and 2 . are satisfied
- Simple proof by induction on the number of edges

Algorithmic results

Parity games in NP \cap co-NP

Algorithmic results

Parity games in NP \cap co-NP

- in NP:

■ Guess a positional winning strategy σ player 1

- Construct the one-player game G_{σ} obtained from G by fixing σ
- Check in polynomial time whether there exists a reachable cycle with odd maximum color

Algorithmic results

Parity games in NP \cap co-NP

- in NP:

■ Guess a positional winning strategy σ player 1

- Construct the one-player game G_{σ} obtained from G by fixing σ
- Check in polynomial time whether there exists a reachable cycle with odd maximum color

■ in co-NP: symmetrically for player 2

Algorithmic results

Parity games in NP \cap co-NP

- in NP:

■ Guess a positional winning strategy σ player 1

- Construct the one-player game G_{σ} obtained from G by fixing σ
- Check in polynomial time whether there exists a reachable cycle with odd maximum color

■ in co-NP: symmetrically for player 2

Mean-payoff games in NP \cap co-NP

Algorithmic results

Parity games in NP \cap co-NP

- in NP:
- Guess a positional winning strategy σ player 1
- Construct the one-player game G_{σ} obtained from G by fixing σ
- Check in polynomial time whether there exists a reachable cycle with odd maximum color

■ in co-NP: symmetrically for player 2

Mean-payoff games in NP \cap co-NP
■ Same approach

- One can compute in polynomial time the minimum (resp. maximum) average weight cycle in a weighted graph [Kar78]

1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

6 Conclusion

Intersection of objectives

- Intersection of homogeneous objectives
- For instance, intersection of n reachability objectives

Intersection of objectives

- Intersection of homogeneous objectives
- For instance, intersection of n reachability objectives
- Intersection of heterogeneous objectives
- Remember the lawnmower example

■ Büchi objective : grass must be cut infinitely often
■ Energy objective : battery and fuel must never drop below 0

- Mean-payoff objective : average time per action must be less than 10 in the long run

Intersection of objectives

- Intersection of homogeneous objectives
- For instance, intersection of n reachability objectives
- Intersection of heterogeneous objectives
- Remember the lawnmower example

■ Büchi objective : grass must be cut infinitely often
■ Energy objective : battery and fuel must never drop below 0

- Mean-payoff objective : average time per action must be less than 10 in the long run

Orderings on tuples of payoffs
■ Usual (partial) ordering (see next slides) $\left(x_{1}, y_{1}\right) \geq$ comp $\left(x_{2}, y_{2}\right)$ iff $x_{1} \geq x_{2}$ and $y_{1} \geq y_{2}$
■ Lexicographic ordering [BBMU15], [BHR17] $\left(x_{1}, y_{1}\right) \geq_{\text {lex }}\left(x_{2}, y_{2}\right)$ iff $x_{1}>x_{2}$ or $\left(x_{1}=x_{2}\right.$ and $\left.y_{1} \geq y_{2}\right)$

- Orderings given by Boolean circuits [BBMU15]

Intersection of objectives

Example

- One-player game, order $\geq_{\text {comp }}$
- $k=2, \Omega=\Omega_{1} \cap \Omega_{2}$ with $\Omega_{1}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 1 and $\Omega_{2}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 2

Intersection of objectives

Example

- One-player game, order $\geq_{\text {comp }}$

■ $k=2, \Omega=\Omega_{1} \cap \Omega_{2}$ with $\Omega_{1}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 1 and $\Omega_{2}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 2

- Player 1 is losing with finite-memory strategies
- Eventually periodic play $\rho=h g^{\omega}$
- Average weight of cycle g equal to

$$
\begin{aligned}
& a \cdot(2,0)+b \cdot(0,0)+c \cdot(0,2)=(2 \cdot a, 2 \cdot c) \not ¥_{\text {comp }}(1,1) \\
& \text { with } a+b+c=1 \text { and } b>0
\end{aligned}
$$

Intersection of objectives

Example

- One-player game, order $\geq_{\text {comp }}$
- $k=2, \Omega=\Omega_{1} \cap \Omega_{2}$ with $\Omega_{1}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 1 and $\Omega_{2}=\overline{\mathrm{MP}}(\rho) \geq 1$ for dimension 2

- Player 1 is losing with finite-memory strategies
- Eventually periodic play $\rho=h g^{\omega}$
- Average weight of cycle g equal to

$$
\begin{aligned}
& a \cdot(2,0)+b \cdot(0,0)+c \cdot(0,2)=(2 \cdot a, 2 \cdot c) \not ¥_{\text {comp }}(1,1) \\
& \text { with } a+b+c=1 \text { and } b>0
\end{aligned}
$$

- Player 1 is winning with infinite-memory strategies,
- even for ensuring $\geq_{\text {comp }}(2,2)$
- with MP instead of MP, but only for ensuring $\geq_{\text {comp }}(1,1)$

Intersection of objectives
Homogeneous objectives [CDHR10, CHP07, FH13], [CRR14]

	Reach	Parity	MP	$\overline{\text { MP }}$
Complexity	PSPACE-complete	coNP-complete	NP \cap co-NP	
PI. 1 strategy	finite-memory	infinite-memory		
PI. 2 strategy	finite-memory	positional		

Intersection of objectives

Homogeneous objectives [CDHR10, CHP07, FH13],[CRR14]

	Reach	Parity	MP	$\overline{\text { MP }}$
Complexity	PSPACE-complete	coNP-complete	NP \cap co-NP	
PI. 1 strategy	finite-memory	infinite-memory		
PI. 2 strategy	finite-memory	positional		

Heterogeneous objectives

Theorem

- [Vel15]: Undecidability for Boolean comb. of MP and MP objectives
- [BHR16]: PSPACE-completeness for Boolean combinations of Inf, Sup, LimInf, LimSup objectives, and finite-memory winning strategies for both players
- [BHRR19]: Work in progress about the intersection of two objectives: mean-payoff and energy

1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

Another model

Summary

■ Reactive systems embedded into an uncontrollable environment

- 2-player zero-sum games, one player against the other

■ Qualitative/quantitative uni/multidimensional objectives

Another model

Summary

- Reactive systems embedded into an uncontrollable environment
- 2-player zero-sum games, one player against the other

■ Qualitative/quantitative uni/multidimensional objectives
Another model
■ Systems composed of multiple interacting components

- Each component (= player) has objectives that can be compatible or not with the objectives of the other components

Another model

Summary

- Reactive systems embedded into an uncontrollable environment
- 2-player zero-sum games, one player against the other

■ Qualitative/quantitative uni/multidimensional objectives
Another model
■ Systems composed of multiple interacting components

- Each component (= player) has objectives that can be compatible or not with the objectives of the other components
■ Modelization with multiplayer non zero-sum games played on graphs
■ Several players with their own objectives
- Non necessarily antagonistic objectives

■ Focus on the synthesis of equilibria instead of winning srategies

Another model

Summary

- Reactive systems embedded into an uncontrollable environment
- 2-player zero-sum games, one player against the other

■ Qualitative/quantitative uni/multidimensional objectives
Another model
■ Systems composed of multiple interacting components

- Each component (= player) has objectives that can be compatible or not with the objectives of the other components

■ Modelization with multiplayer non zero-sum games played on graphs
■ Several players with their own objectives

- Non necessarily antagonistic objectives
- Focus on the synthesis of equilibria instead of winning srategies
- Algorithmic problems
- Does there always exist an equilibrium? Can we construct it?
- Can we decide the existence of an equilibrium under some constraints?

Introductory example

Exchange protocol [CDFR17]

- Players Alice (A) and Bob (B) exchange messages
- message $m_{A B}$: models the transfer of property of a house from A to B
- message $m_{B A}$: models the payment of the price of the house from B to A

Tree with 4 plays

Introductory example

Exchange protocol [CDFR17]

■ Players Alice (A) and Bob (B) exchange messages

- message $m_{A B}$: models the transfer of property of a house from A to B
- message $m_{B A}$: models the payment of the price of the house from B to A

Tree with 4 plays

- Alice and Bob have their own objectives

■ Objective of A : to get the money (she prefers 2,4 to 1,3)

- Objective of B: to get the house (he prefers 3,4 to 1,2)

Introductory example

Exchange protocol [CDFR17]

- Players Alice (A) and Bob (B) exchange messages
- message $m_{A B}$: models the transfer of property of a house from A to B
- message $m_{B A}$: models the payment of the price of the house from B to A

Tree with 4 plays

- Alice and Bob have their own objectives

■ Objective of A : to get the money (she prefers 2,4 to 1,3)

- Objective of B: to get the house (he prefers 3,4 to 1,2)
- Solution (Nash equilibrium)
- A plays $m_{A B}$ and then B plays $m_{B A}$

■ if A plays $\neg m_{A B}$, then B plays $\neg m_{B A}$

- A and B have their objective satisfied and have no incentive to deviate

Introductary example

Modified exchange protocol [CDFR17]
■ Alice and Bob have their own primary objective and external secondary objective

- Objectives of A:

1 prefers 2,4 to 1,3
2 with preferences $2>4$ and $1>3$

- Objectives of B :

1 prefers 3,4 to 1,2

2 with preferences $3>4$ and $1>2$

Introductary example

Modified exchange protocol [CDFR17]

- Alice and Bob have their own primary objective and external secondary objective
- Objectives of A:

1 prefers 2,4 to 1,3
2 with preferences $2>4$ and $1>3$

- Objectives of B:

1 prefers 3,4 to 1,2

Tree with 4 plays

2 with preferences $3>4$ and $1>2$

- Solution
- Play 4 is no longer a solution since B will deviate to play 3
- Solution (secure equilibrium):
- A plays $\neg m_{A B}$ and then B plays $\neg m_{B A}$
- If A plays $m_{A B}, \mathrm{~B}$ plays $\neg m_{B A}$
- A, B have no incentive to deviate, their own objectives are not satisfied

Model

Definition

n-player non zero-sum game $G=\left(V,\left(V_{i}\right)_{i \in \Pi}, E, v_{0}, \bar{w}\right)$:

- Set Π of n players, $n \geq 1$
$\square\left(V_{i}\right)_{i \in \Pi}$ partition of V with V_{i} controlled by player $i \in \Pi$
- optional: $\bar{w}=\left(w_{i}\right)_{i \in \Pi}: E \rightarrow \mathbb{Z}^{n}$ such that
- w_{i} is the weight function of player i
- leading to his payoff function f_{i}

Model

Definition

n-player non zero-sum game $G=\left(V,\left(V_{i}\right)_{i \in \Pi}, E, v_{0}, \bar{w}\right)$:

- Set Π of n players, $n \geq 1$

■ $\left(V_{i}\right)_{i \in \Pi}$ partition of V with V_{i} controlled by player $i \in \Pi$

- optional: $\bar{w}=\left(w_{i}\right)_{i \in \Pi}: E \rightarrow \mathbb{Z}^{n}$ such that
- w_{i} is the weight function of player i
- leading to his payoff function f_{i}

Objective Ω_{i} for each player $i \in \Pi$

- qualitative $\left(f_{i}(\rho) \in\{0,1\}\right)$: player i wants to win
- quantitative : player i wants to maximize $f_{i}(\rho)$

Model

Definition

n-player non zero-sum game $G=\left(V,\left(V_{i}\right)_{i \in \Pi}, E, v_{0}, \bar{w}\right)$:

- Set Π of n players, $n \geq 1$
$\square\left(V_{i}\right)_{i \in \Pi}$ partition of V with V_{i} controlled by player $i \in \Pi$
■ optional: $\bar{w}=\left(w_{i}\right)_{i \in \Pi}: E \rightarrow \mathbb{Z}^{n}$ such that
- w_{i} is the weight function of player i
- leading to his payoff function f_{i}

Objective Ω_{i} for each player $i \in \Pi$
■ qualitative $\left(f_{i}(\rho) \in\{0,1\}\right)$: player i wants to win

- quantitative : player i wants to maximize $f_{i}(\rho)$

Strategy profile $\left(\sigma_{i}\right)_{i \in \Pi}$
■ with outcome $\rho=\left\langle\left(\sigma_{i}\right)_{i \in \Pi}\right\rangle_{v_{0}}$ from initial vertex v_{0}

- with payoff $\left(f_{i}(\rho)\right)_{i \in \Pi}$

Nash equilibria

Classical notion such that

- each player wants to maximize his payoff (he is rational), and
- he is only concerned with his own payoff (he is indifferent to the payoff of the other players)

Nash equilibria

Classical notion such that

- each player wants to maximize his payoff (he is rational), and

■ he is only concerned with his own payoff (he is indifferent to the payoff of the other players)

Definition [Nas50]

The strategy profile $\left(\sigma_{i}\right)_{i \in \Pi}$ with outcome ρ from v_{0} is a Nash equilibrium (NE) if, for each player $i \in \Pi$, for each strategy σ_{i}^{\prime} of i,

$$
f_{i}(\rho) \nless f_{i}\left(\left\langle\sigma_{i}^{\prime}, \sigma_{-i}\right\rangle_{v_{0}}\right)
$$

Notation: $\sigma_{-i}=\left(\sigma_{j}\right)_{j \in \Pi \backslash\{i\}}$

Informally, $\left(\sigma_{i}\right)_{i \in \Pi}$ is an NE if no player has an incentive to deviate from his strategy, if the other players stick to their own strategies

Nash equilibria

Example

Simple game

- with 2 players
- with 3 plays
- and their payoffs indicated below

Nash equilibria

Example

Simple game

- with 2 players
- with 3 plays
- and their payoffs indicated below

■ NE with outcome $v_{0} v_{2} v_{4}^{\omega}$ with payoff $(3,2)$
■ No incentive to deviate:

- If player 1 deviates to v_{1}, he will get 1 instead of 3
- If player 2 deviates to v_{3}, he will get 1 instead of 2

Algorithmic results on NE

Theorem

Qualitative objectives

- [GU08]: Existence of an NE in case of Borel objectives

Quantitative objectives

- [Kuh53]: Existence and construction of an NE for games played on a finite tree

Algorithmic results on NE

Theorem

Qualitative objectives

- [GU08]: Existence of an NE in case of Borel objectives

Quantitative objectives

- [Kuh53]: Existence and construction of an NE for games played on a finite tree

Proof of [Kuh53]: Backward induction from the leaves to the root

Algorithmic results on NE

Definition

Given a game G and a player i,

- G_{i} is a two-player zero-sum game with players i and $-i$ (coalition), and payoff function f_{i}
- In G_{i}, a vertex v has a value $\operatorname{val}_{i}(v)$ if
- player i has a strategy τ_{i}^{v} to ensure a payoff $\geq \operatorname{val}_{i}(v)$ from v
- player - i has a strategy τ_{-i}^{v} to ensure a payoff $\leq \operatorname{val}_{i}(v)$ from v
- The strategies τ_{i}^{\vee} and τ_{-i}^{\vee} are called optimal

Algorithmic results on NE

Definition

Given a game G and a player i,

- G_{i} is a two-player zero-sum game with players i and $-i$ (coalition), and payoff function f_{i}
- In G_{i}, a vertex v has a value val $_{i}(v)$ if
- player i has a strategy τ_{i}^{v} to ensure a payoff $\geq \operatorname{val}_{i}(v)$ from v
- player - i has a strategy τ_{-i}^{v} to ensure a payoff $\leq \operatorname{val}_{i}(v)$ from v
- The strategies τ_{i}^{v} and τ_{-i}^{\vee} are called optimal

Example

Algorithmic results on NE

Theorem [BDS13]

Let G be a multiplayer non zero-sum game such that for all i

- the payoff function f_{i} satisfies: $f_{i}(\rho) \leq f_{i}\left(\rho^{\prime}\right) \Rightarrow f_{i}(h \rho) \leq f_{i}\left(h \rho^{\prime}\right)$

■ the zero-sum game G_{i} has uniform positional optimal τ_{i} and τ_{-i} strategies for both players
Then one can construct a simple finite-memory NE in G

Algorithmic results on NE

Theorem [BDS13]

Let G be a multiplayer non zero-sum game such that for all i

- the payoff function f_{i} satisfies: $f_{i}(\rho) \leq f_{i}\left(\rho^{\prime}\right) \Rightarrow f_{i}(h \rho) \leq f_{i}\left(h \rho^{\prime}\right)$
- the zero-sum game G_{i} has uniform positional optimal τ_{i} and τ_{-i} strategies for both players
Then one can construct a simple finite-memory NE in G
Construction: The NE profile σ is as follows
- play as τ_{i} for each player i (player i plays selfishly and optimally with respect to f_{i})
■ and as soon as some player i deviates, punish i by playing τ_{-i} (coalition $-i$ plays against player i with respect to f_{i})

Algorithmic results on NE

Theorem [BDS13]

Let G be a multiplayer non zero-sum game such that for all i

- the payoff function f_{i} satisfies: $f_{i}(\rho) \leq f_{i}\left(\rho^{\prime}\right) \Rightarrow f_{i}(h \rho) \leq f_{i}\left(h \rho^{\prime}\right)$
- the zero-sum game G_{i} has uniform positional optimal τ_{i} and τ_{-i} strategies for both players
Then one can construct a simple finite-memory NE in G
Many applications
■ Reachability, Büchi, Parity, Sup, LimSup, Mean-payoff, Discounted-sum, ...

Algorithmic results on NE

Theorem [BDS13]

Let G be a multiplayer non zero-sum game such that for all i

- the payoff function f_{i} satisfies: $f_{i}(\rho) \leq f_{i}\left(\rho^{\prime}\right) \Rightarrow f_{i}(h \rho) \leq f_{i}\left(h \rho^{\prime}\right)$
- the zero-sum game G_{i} has uniform positional optimal τ_{i} and τ_{-i} strategies for both players
Then one can construct a simple finite-memory NE in G
Threshold/constraint problem for NEs [Umm08, UW11b, KLST12]

Büchi/LimSup	Reach/Sup	Parity	$\overline{\mathrm{MP}}$
P-complete	NP-complete		

- thanks to a characterization of NE outcomes based on games G_{i}
- Open for Disc ${ }^{\lambda}$

Other kinds of equilibria

Secure equilibrium (SE) [CHJ06]

- each player wants to maximize his payoff, as a first objective
- and then minimize the payoff of the other players, as a second objective

Other kinds of equilibria

Secure equilibrium (SE) [CHJ06]

- each player wants to maximize his payoff, as a first objective
- and then minimize the payoff of the other players, as a second objective

Example

- SE with payoff $(1,1)$

■ No incentive to deviate

- If Player 2 deviates, he gets 0 instead of 1
- If Player 1 deviates, he keeps his payoff 1 but he increases the payoff of Player 2

Other kinds of equilibria

Secure equilibrium (SE) [CHJ06]

- each player wants to maximize his payoff, as a first objective
- and then minimize the payoff of the other players, as a second objective

Theorem

- [CHJ06]: Existence of an SE for 2-player games with qualitative Borel objectives. Result extended to n-player games in [DFK ${ }^{+}$14]
- [BMR14]: Previous general approach for NEs extended to SE for 2-player games

Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_{0}, but also after every history h of the game
- avoids uncredible threat

Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_{0}, but also after every history h of the game
- avoids uncredible threat

Example: NE which is not an SPE

- Player 1 will not deviate, due to the threat of player 2
- Uncredible threat of player 2
- More rational for player 2 to go to v_{4} in the subgame induced by v_{2}, v_{3}, v_{4}

Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_{0}, but also after every history h of the game
- avoids uncredible threat

Theorem

- Previous result of [Kuh53] provides NE and more generally SPE
- [GU08]: Existence of an SPE in case of qualitative Borel objectives
- [SV03]: Simple example of a game with mean-payoff objectives that has no SPE

Other kinds of equilibria

Subgame perfect equilibrium (SPE) [Sel65]

- takes into account the sequential nature of games played on graphs
- i.e., is an NE from the initial vertex v_{0}, but also after every history h of the game
- avoids uncredible threat

Theorem

- [BBGR18]: The constraint problem for SPE with reachability objectives is PSPACE-complete
- [BBMR15]: Construction of a finite-memory SPE for quantitative reachability
- [$\left.\mathrm{BBG}^{+} 19\right]$ (Work in progress): The constraint problem for SPE in quantitative reachability games is PSPACE-complete

1 Topic

2 Qualitative two-player zero-sum games

3 Quantitative two-player zero-sum games

4 Two-player zero-sum games: several extensions

5 Multiplayer non zero-sum games

6 Conclusion

Summary

■ 2-player zero-sum games, one player against the other

- Qualitative/quantitative uni/multidimensional objectives
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SE, SPE)

■ More results in the survey

Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objectives
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SE, SPE)

■ More results in the survey
Other extensions

- Concurrent games

■ Stochastic games

- Imperfect information

Summary

- 2-player zero-sum games, one player against the other
- Qualitative/quantitative uni/multidimensional objectives
- Extension to multiplayer non zero-sum games
- Different notions of equilibria (NE, SE, SPE)

■ More results in the survey
Other extensions

- Concurrent games
- Stochastic games
- Imperfect information
\square

Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie Van Den Bogaard, Constrained problem for subgame perfect equilibria in quantitative reachability games, Work in progress, 2019.

Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin, Constrained existence problem for weak subgame perfect equilibria with omega-regular boolean objectives, CoRR abs/1806.05544 (2018).

围 Thomas Brihaye, Véronique Bruyère, Noémie Meunier, and Jean-François Raskin, Weak subgame perfect equilibria and their application to quantitative reachability, CSL Proceedings, LIPIcs, vol. 41, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 504-518.

围 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels, Pure Nash equilibria in concurrent deterministic games, Logical Methods in Comput. Sci. 11 (2015), no. 2.

R Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann, Graph games and reactive synthesis, Handbook of Model Checking. (Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, eds.), Springer, 2018, pp. 921-962.

Thomas Brihaye, Julie De Pril, and Sven Schewe, Multiplayer cost games with simple Nash equilibria, LFCS Proceedings, Lecture Notes in Comput. Sci., vol. 7734, Springer, 2013, pp. 59-73.
Catriel Beeri, On the membership problem for functional and multivalued dependencies in relational databases, ACM Trans. Database Syst. 5 (1980), no. 3.

圊 Udi Boker, Thomas A. Henzinger, and Jan Otop, The target discounted-sum problem, LICS Proceedings, IEEE Computer Society, 2015, pp. 750-761.

國 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin, On the complexity of heterogeneous multidimensional games, Proceedings

CONCUR 2016，LIPIcs，vol．59，Schloss Dagstuhl－Leibniz－Zentrum fuer Informatik，2016，pp．11：1－11：15．

圊 \qquad ，Games with lexicographically ordered ω－regular objectives， CoRR abs／1707．05968（2017）．

Réronique Bruyère，Quentin Hautem，Mickael Randour，and Jean－François Raskin，Energy and mean－payoff games，Work in progress， 2019.

Véronique Bruyère，Noémie Meunier，and Jean－François Raskin， Secure equilibria in weighted games，CSL－LICS Proceedings，ACM， 2014，pp．26：1－26：26．

囯 Véronique Bruyère，Computer aided synthesis：A game－theoretic approach，DLT，LNCS，vol．10396，Springer，2017，pp．3－35．

围 Henrik Björklund，Sven Sandberg，and Sergei G．Vorobyov， Memoryless determinacy of parity and mean payoff games：a simple proof，Theor．Comput．Sci． 310 （2004），no．1－3，365－378．

Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, and Jean-François Raskin, Doomsday equilibria for omega-regular games, Inf. Comput. 254 (2017), 296-315.

Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger, Quantitative languages, ACM Trans. Comput. Log. 11 (2010).

R Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin, Generalized mean-payoff and energy games, FSTTCS'10, LIPIcs, vol. 8, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010, pp. 505-516.
(Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski, Games with secure equilibria, Theor. Comput. Sci. 365 (2006), 67-82.
T- Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman, Generalized parity games, FoSSaCS Proceedings, Lecture Notes in Comput. Sci., vol. 4423, Springer, 2007, pp. 153-167.

囯 Cristian S．Calude，Sanjay Jain，Bakhadyr Khoussainov，Wei Li，and Frank Stephan，Deciding parity games in quasipolynomial time， Proceedings STOC 2017，ACM，2017，pp．252－263．

國 Krishnendu Chatterjee，Mickael Randour，and Jean－François Raskin， Strategy synthesis for multi－dimensional quantitative objectives，Acta Inf． 51 （2014），no．3－4，129－163．

直 Julie De Pril，János Flesch，Jeroen Kuipers，Gijs Schoenmakers，and Koos Vrieze，Existence of secure equilibrium in multi－player games with perfect information，MFCS Proceedings，Lecture Notes in Comput．Sci．，vol．8635，Springer，2014，pp．213－225．

E．Allen Emerson and Charanjit S．Jutla，Tree automata，mu－calculus and determinacy，FOCS Proceedings，IEEE Comp．Soc．，1991， pp．368－377．
囯 A．Ehrenfeucht and J．Mycielski，Positional strategies for mean payoff games，Int．Journal of Game Theory 8 （1979），109－113．

國 Nathanaël Fijalkow and Florian Horn, Les jeux d'accessibilité généralisée, Technique et Science Informatiques 32 (2013), no. 9-10, 931-949.
Erich Grädel, Wolfgang Thomas, and Thomas Wilke (eds.), Automata, logics, and infinite games: A guide to current research, Lecture Notes in Comput. Sci., vol. 2500, Springer, 2002.

E- Erich Grädel and Michael Ummels, Solution Concepts and Algorithms for Infinite Multiplayer Games, New Perspectives on Games and Interaction, vol. 4, Amsterdam University Press, 2008, pp. 151-178.
圊 Hugo Gimbert and Wieslaw Zielonka, When can you play positionally?, MFCS Proceedings, Lecture Notes in Comput. Sci., vol. 3153, Springer, 2004, pp. 686-697.
Florian Horn, Explicit Muller games are PTIME, FSTTCS Proceedings, LIPIcs, vol. 2, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008, pp. 235-243.

Paul Hunter and Jean-François Raskin, Quantitative games with interval objectives, FSTTCS Proceedings, LIPIcs, vol. 29, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014, pp. 365-377.

目 Neil Immerman, Number of quantifiers is better than number of tape cells, J. Comput. Syst. Sci. 22 (1981), 384-406.

䡒 Marcin Jurdzinski, Deciding the winner in parity games is in UP \cap co-UP, Inf. Process. Lett. 68 (1998), no. 3, 119-124.

Richard M Karp, A characterization of the minimum cycle mean in a digraph, Discrete Mathematics 23 (1978), 309-311.

- Miroslav Klimos, Kim G. Larsen, Filip Stefanak, and Jeppe Thaarup, Nash equilibria in concurrent priced games, LATA Proceedings, Lecture Notes in Comput. Sci., vol. 7183, Springer, 2012, pp. 363-376.

Harold W. Kuhn, Extensive games and the problem of information, Classics in Game Theory (1953), 46-68.

Ronald A. Martin, Borel determinacy, Annals of Mathematics 102 (1975), 363-371.

John F. Nash, Equilibrium points in n-person games, PNAS, vol. 36, National Academy of Sciences, 1950, pp. 48-49.
R. Rényi, Representations of real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungarica 8 (1957), no. 3-4, 477-493.

囯 Mickael Randour, Automated synthesis of reliable and efficient systems through game theory: a case study, vol. abs/1204.3283, 2012.

Reinhard Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit, Zeitschrift für die gesamte Staatswissenschaft 121 (1965), 301-324 and 667-689.
Eilon Solan and Nicolas Vieille, Deterministic multi-player Dynkin games, Journal of Mathematical Economics 39 (2003), 911-929.

囯 Michael Ummels，The complexity of Nash equilibria in infinite multiplayer games，FoSSaCS Proceedings，Lecture Notes in Comput． Sci．，vol．4962，Springer，2008，pp．20－34．
（R）Michael Ummels and Dominik Wojtczak，The complexity of Nash equilibria in limit－average games，CoRR abs／1109．6220（2011）．

目 ，The complexity of Nash equilibria in limit－average games， CONCUR Proceedings，Lecture Notes in Comput．Sci．，vol．6901， Springer，2011，pp．482－496．
围 Yaron Velner，Robust multidimensional mean－payoff games are undecidable，FoSSaCS Proceedings，Lecture Notes in Comput．Sci．， vol．9034，Springer，2015，pp．312－327．

固 Wieslaw Zielonka，Infinite games on finitely coloured graphs with applications to automata on infinite trees，Theor．Comput．Sci． 200 （1998），no．1－2，135－183．

Uri Zwick and Mike Paterson, The complexity of mean payoff games on graphs, Theor. Comput. Sci. 158 (1996), 343-359.

