Combinatorics of shuffle products (or how to shuffle a deck of cards)

Matthieu Josuat-Vergès

Laboratoire d'Informatique Gaspard Monge, Université Paris-Est Marne-la-Vallée
Journées du GDR IM

Enumerative Combinatorics

Enumerative problems arise in various contexts:

- discrete probability and statistical physics (compute probabilities in a discrete Markov chain)
- discrete geometry (counting integer points in polytopes)
- algebra and representation theory (count the multiplicity of an irreducible representation in a representation)
- many more examples

Counting problems

- Exact formulas. Dyck paths, binary trees:

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

- Generating functions. Alternating permutations such as 7162534,

$$
\tan (z)=\frac{\sin (z)}{\cos (z)}=z+2 \frac{z^{3}}{3!}+16 \frac{z^{5}}{5!}+272 \frac{z^{7}}{7!}+\ldots
$$

- Asymptotic formulas. Integer partitions such as $9=4+3+1+1$.

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{2 n / 3}} \text { as } n \rightarrow \infty
$$

- Bijective problems:

Find bijections between sets with the same cardinality. Prove combinatorial identities by bijections, such as

$$
\sum_{j=0}^{k}\binom{a}{j}\binom{b}{k-j}=\binom{a+b}{k}
$$

- Structural problems: partially ordered sets, group actions on set and related symmetries...

The computational side

- Experimentation: software such as SageMath can be used to manipulate combinatorial objects, make new conjectures, give evidence to old conjectures.
- Proofs: often the "generic" case of a proof is done by reasoning, leaving a finite number of cases to be checked by computer.
- Algorithms: some combinatorial construction have a strong algorithmic flavor.

Shuffle of a deck of cards

Definition

A shuffle of a sequence is done by:

1) splitting it in two parts,
2) create a new sequence containing the two parts, keeping their relative order.

Example

$$
165482973 \rightarrow 1654 \mid 82973 \rightarrow 182697543
$$

A permutation $\sigma_{1} \ldots \sigma_{n}$ of $1 \ldots n$ is a shuffle of $1 \ldots n$ if there is at most one i such that $i+1$ is to its left. For example, 41256738.

The number of (nontrivial) shuffles of $1 \ldots n$ is $2^{n}-n-1$.

Perfect shuffles

Here we assume n is even. A perfect shuffle is when you split a deck in two equal parts, and combine the cards in an alternating way. It has two variants:

$$
\begin{aligned}
& \pi_{1}: 12345678 \rightarrow 15263748 \\
& \pi_{2}: 12345678 \rightarrow 51627384 .
\end{aligned}
$$

Formally, π_{i} is in the symmetric group \mathfrak{S}_{n}, and a permutation σ acts on words by $\sigma \cdot\left(a_{1} \ldots a_{n}\right)=a_{\sigma^{-1}(1)} \ldots a_{\sigma^{-1}(n)}$.

Perfect shuffles

Theorem (Elmsley)
You can move a chosen card i in top position of the deck in $\left\lfloor\log _{2} n\right\rfloor$ operations, where each operation is π_{1} or π_{2}.

Perfect shuffles

Theorem (Elmsley)

You can move a chosen card i in top position of the deck in $\left\lfloor\log _{2} n\right\rfloor$ operations, where each operation is π_{1} or π_{2}.

Suppose $n=2^{k}$, number the cards from 0 to $n-1$, represent i by its binary expansion $a_{1} \ldots a_{k}$. Then the perfect shuffles are:

$$
\begin{aligned}
\pi_{1} & : a_{1} \ldots a_{k} \rightarrow a_{2} \ldots a_{k} a_{1} \\
\pi_{2} & : a_{1} \ldots a_{k} \rightarrow a_{2} \ldots a_{k} \overline{a_{1}}
\end{aligned}
$$

$\left(\overline{a_{1}}=1-a_{1}\right)$. You can use this to get $0 \ldots 0$ in k steps.

Perfect shuffles

Diaconis, Graham, Kantor (1983) computed the group generated by the perfect shuffles π_{1} and π_{2}.

When $n=24$, the answer involves one of the sporadic finite simple groups, the Mathieu group M_{12}.

They relate perfect shuffle with parallel computing and an $O(\log n)$ fast Fourier transform algorithm.

Let ω_{n} denote the order of π_{1} when there are $2 n$ cards. This is the order of 2 in the ring of integers modulo $2 n-1$. Very little is known about this sequence, number theory is involved.

Perfect shuffles

There exists other types of perfect shuffles. The Monge perfect shuffle is done by reversing one set of cards before mixing the two sets:

$$
12345678 \mapsto 18273645
$$

Cf. Lachal 2010: computations of the periods of this shuffles (and its variants) via arithmetic.

Riffle shuffle

A riffle shuffle is done by chosing uniformly one shuffle among the $2^{n}-n-1$ shuffles of $1, \ldots, n$, and permute the deck of cards accordingly.

Remark

There are effective ways to describe this operation. Begin by splitting the deck of n cards in two sets, according to a binomial distribution: the probability to get sets of size k and $n-k$ is $\binom{n}{k} \frac{1}{2^{n}}$.

Then choose uniformly a k-element subset of $1 \ldots n$ which will give the positions of cards in the first set.
(To avoid trivial shuffles... repeat the operation until you get a nontrivial shuffle!)

Riffle shuffle

Even more, there is a practical way to choose a random subset of size k among the $\binom{n}{k}$ choices.

At each step, there are i (resp. j) cards remaining cards in the first set (resp. second set). Then the next card you pick is from set 1 with probability $i /(i+j)$ and from set 2 with probability $j /(i+j)$.

Start with $(i, j)=(k, n-k)$ and finish when $i=j=0$.

Riffle shuffle

Problem
Take a deck 52 cards, perfectly sorted.
How many shuffles do you need to perform to get a randomly sorted deck ?

Theorem
In a "human" situation, 7 is more than enough.

Bayer and Diaconis (1992), Trefethen (2000).
The formalization of the problem comes from: Gilbert-Shannon-Reeds (1955), Diaconis (1988).

It leads to consider a Markov chain on the symmetric group \mathfrak{S}_{52}.

Riffle shuffle

Given a sequence $\left(a_{1}, \ldots, a_{n}\right)$, and a permutation $\sigma \in \mathfrak{S}_{n}$, the action of σ is

$$
\sigma \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a_{\sigma^{-1}(1)}, \ldots, a_{\sigma^{-1}(n)}\right)
$$

Definition

A descent of a permutation $\sigma \in \mathfrak{S}_{n}$ is an index $1 \leq i \leq n-1$ such that $\sigma(i)>\sigma(i+1)$.

Lemma
A shuffle is the action of a permutation $\sigma \in \mathfrak{S}_{n}$ with only one descent.
For example, $147823569 \cdot 165482973=182697543$.

Riffle shuffle

Remark

A permutation $\sigma_{1} \ldots \sigma_{n}$ can be seen in two different ways:

- it is a deck of cards (upon numbering cards from 1 to n),
- it acts on deck of cards by permuting cards.

The second point of view is natural to compose permutations. But we want to avoid using the huge group $\mathfrak{S}_{n!}$.

We need to identify the permutation σ with the "translation" $\tau \mapsto \tau \sigma^{-1}$.

The group algebra

It is convenient to work in the group algebra $\mathbb{Z}\left[\mathfrak{S}_{n}\right]$. Its elements are formal sums of permutations with integers coefficients.
Remark
An element $\sum_{\sigma \in \mathfrak{S}_{n}} a_{\sigma} \sigma$ where $a_{\sigma} \geq 0$ naturally gives a probability distribution on \mathfrak{S}_{n} by:

$$
\mathbb{P}(\sigma)=\frac{a_{\sigma}}{\sum a_{\sigma}}
$$

Think of a_{σ} as a "non-normalized" probability.

Consider the sum of all shuffles:

$$
E_{1}=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ \sigma \text { has } 1 \text { descent }}} \sigma
$$

The group algebra

Proposition

Consider the expansion

$$
E_{1}^{k}=\sum_{\sigma \in \mathfrak{S}_{n}} A_{k, \sigma} \sigma
$$

then $A_{k, \sigma}$ is the number of ways to get σ from $1,2,3, \ldots, n$ after k shuffles.
So $A_{k, \sigma} /\left(\sum A_{k, \sigma}\right)$ is the probability to get σ after k (uniformly chosen) shuffles applied to $123 \ldots n$.
Proof.
By definition, $\boldsymbol{A}_{k, \sigma}$ is the number of factorizations $\sigma=\sigma_{1} \cdots \sigma_{k}$ where each σ_{i} has 1 descent. And $\sum A_{k, \sigma}$ is the number of k-tuples of permutations with 1 descent.

The Eulerian algebra

Theorem (Loday, 1994)
The elements

$$
E_{k}=\sum_{\sigma \in \mathfrak{S}_{n}, k \text { descents }} \sigma \quad \text { for } 0 \leq k \leq n-1,
$$

linearly span a n-dimensional subalgebra of $\mathbb{Z}\left[\mathfrak{S}_{n}\right]$.
It is called the descent algebra. This means there is an expansion $E_{i} E_{j}=\sum_{k} c_{k} E_{k}$.

So computing E_{1}^{k} can be done in a n-dimensional vector space!

The Eulerian subalgebra

This algebra is named after the Eulerian numbers. They are integers $A_{n, k}$ counting the number of permutations in \mathfrak{S}_{n} with k descents. In particular $A_{n, k}$ is the number of terms in the sum E_{k}.

Generating function: $\sum_{k, n \geq 0} A_{n, k} z^{n} t^{k}=\frac{t-1}{t-e^{(t-1) z}}$.
1
11
141
$\begin{array}{llll}1 & 11 & 11 & 1\end{array}$
$\begin{array}{lllll}1 & 26 & 66 & 26 & 1\end{array}$

Idempotents

Theorem
The Eulerian algebra has a basisof orthogonal idempotents, i.e. a linear basis $\left(P_{i}\right)_{1 \leq i \leq n}$ such that $P_{i} P_{j}=\delta_{i, j} P_{i}$.

One of the idempotent is $\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} \sigma$.
It represents the uniform probability distribution on \mathfrak{S}_{n}.
If $E_{1}=\sum a_{i} P_{i}$ then $E_{1}^{k}=\sum a_{i}^{k} P_{i}$. We can get the rate of convergence to the uniform distribution!

Some bijective problems, coming from the Eulerian algebra:
If σ, τ have the same number of descents, find a bijection between:

- factorizations $\sigma=\alpha \beta$ where $\operatorname{des}(\alpha)=i, \operatorname{des}(\beta)=j$, and
- factorizations $\tau=\alpha \beta$ where $\operatorname{des}(\alpha)=i, \operatorname{des}(\beta)=j$.
(This proves the existence of the algebra.)

For each $\sigma \in \mathfrak{S}_{n}$, find a bijection between:

- factorizations $\sigma=\alpha \beta$ where $\operatorname{des}(\alpha)=i, \operatorname{des}(\beta)=j$, and
- factorizations $\sigma=\alpha \beta$ where $\operatorname{des}(\alpha)=j, \operatorname{des}(\beta)=i$.
(This shows the commutativity.)
Thanks for your attention.

