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Online Learning is the mainstream theoretical framework for making sequential decisions in face
of uncertainty.

How should you filter incoming emails?
Which daily items should you recommender to your customers?
What move should you consider next when playing Go?
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Online learning is a (zero-sum) repeated game between the forecaster and its environment.

For each round t = 1 to T

The forecaster chooses an action at ∈ A (possibly at random)
The environment simultaneously chooses a loss function ℓt : A → R

The forecaster incurs the loss ℓt(at)
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Regret
The goal of the player is to minimize its regret, which is a measure of relative performance the
actions taken by the player and the best possible action (with benefit of hindsight).



Regret
Formally, the expected regret is defined as

RegretT =
T∑

t=1
E[ℓt(at)]−min

a∈A

T∑
t=1

ℓt(a)

Hannan Consistency
A player is Hannan consistent if for any sequence of losses chosen by the environment,
the player’s regret is always sublinear in T

RegretT = o(T) i.e. lim
T→∞

RegretT
T = 0
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ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 …

Multi-Armed Bandits
The forecaster has access to a set A of slot machines. On each round t:

The forecaster chooses a machine at ∈ A

Simultaneously, the environment selects a loss function ℓt : A → {−1,+1}
The forecaster only observes ℓt(at) and incurs this loss



(x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6) …

Antispam Filtering
The forecaster has access to a set A of binary classifers. On each round t:

The forecaster chooses a classifier at ∈ A

Simultaneously, the environment selects an email (with its label “spam” or “ham”) (xt, yt)

The forecaster observes (xt, yt) and incurs the zero-one loss I[at(xt) ̸= yt]



…

Sequential Treatment Allocation
The forecaster has access to a set A of medical treatments. On each round t:

A patient arrives with her symptoms xt

The forecaster chooses a treatment at ∈ A according to xt

Simultaneously, the environment selects a hidden loss function ℓt : A → [0, 1]
The forecaster observes ℓt(at) and incurs this loss. But can she infer the loss of some other
treatments?



…

Online Advertising
The forecaster has access to a set A of ads. On each round t:

A customer arrives with her profile xt

The forecaster chooses an ad at ∈ A according to xt

Simultaneously, the environment selects a hidden loss function ℓt : A → {0, 1}
The forecaster only observes ℓt(at) and incurs this loss. But again, can she infer the loss of
some other ads?
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Prediction Games with Full Information Feedback
The forecaster has access to a set A = {1, · · · ,K} of actions.

The environment has access to a set L ⊆ [0, 1]K of loss functions.

During each round t

The forecaster chooses an action at ∈ A

The environment chooses a loss function ℓt ∈ L

The forecaster observes ℓt, and incurs the loss ℓt(at)

This is a basic supervised learning model.
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Feedback Graphs
For a set A = {1, · · · ,K} of actions, a feedback graph is a digraph G = (A,E), where each arc
(i, j) ∈ E indicates that if we play action i then we observe the loss on action j.



The interest of feedback graphs stems from the fact that for many applications actions are
interdependent. If we play some action at at trial t, then we may infer the loss of similar actions.



Prediction Games with Feedback Graphs
The forecaster has access to a set A = {1, · · · ,K} of actions.

The environment has access to a set L ⊆ [0, 1]K of loss functions.

The environment has also access to a class G ⊆ {0, 1}K×K of feedback graphs.

During each round t

The forecaster chooses an action at ∈ A

The environment chooses a loss function ℓt ∈ L

The environment chooses a feedback graph Gt ∈ G

The forecaster observes Gt and incurs the loss ℓt(at)

This covers a wide spectrum of online learning models!
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Prediction games with feedback graphs include, among others:

Full-information games
Bandit games
Revealing action games
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Online Learning with Full Information Feedback

A is a simple collection {1, · · · ,K} of objects.
L is a set of (bounded) mappings A → [0, 1].
Loss functions are chosen in an adverarial way.
The feedback graph is the complete digraph over A.



Hedge (Freund & Schapire, 1997)

Parameter: stepsize η

Initialization: set pt to the uniform distribution on A
Trials: for t = 1 to T

play At ∼ pt

receive ℓt

update pt+1(i) = pt(i) exp(−ηℓt(i))∑
j∈A pt(j) exp(−ηℓt(j))

full information
exponential weights

Theorem 1
Hedge achieves an optimal regret bound of O(

√
T lnK)
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Second-Order Regret Bound (Cesa-Bianchi et al., 2007)
Let i∗ be any action in A. Then,

T∑
t=1

E[ℓt(i)]−
T∑

t=1
ℓt(i∗) ≤

lnK
η

+ η
T∑

t=1
E
[
ℓt(i)2

]

Proof

Let Wt =
∑

i∈A wt(i), where wt(i) = exp
(
−η

∑t−1
s=1 ℓt(i)

)
.

Then using ex ≤ 1 + x + x2 for x ≤ 1,
Wt+1
Wt

= E[exp(−ηℓt(i))]

≤ E
[
1 − ηℓt(i) + η2ℓt(i)2

]
= 1 − ηE[ℓt(i)] + η2E[ℓt(i)2]

Now, using ln(1 − x) ≤ −x for x ≥ 0, and summing over T,

ln
WT+1

W1
≤ −η

∑
t

E[ℓt(i)] + η2 ∑
t

E[ℓt(i)2]

Finally, for any fixed action i∗, we also have

ln
WT+1

W1
≥ ln

wT+1(i∗)
W1

= −η
T∑

t=1
ℓt(i∗)− lnK

Combining both inequalities and rearranging gives the result.
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Online Learning with Bandit Feedback

A is a simple collection {1, · · · ,K} of objects.
L is a set of (bounded) mappings A → [0, 1].
Loss functions are chosen in an adverarial way.
The feedback graph is fixed and contains only self-loops.



EXP3 (Auer et al., 2003)

Parameters: stepsize η, exploration γ

Initialization:
let u to the uniform distribution over A
set qt = u

Trials: for t = 1 to T
set pt = (1 − γ)qt + γu
play At ∼ pt

receive ℓt(At)

estimate ℓ̂t(i) = ℓt(i)
pt(i) I{i = At}

update qt+1(i) = qt(i) exp(−ηℓ̂t(i))∑
j∈A qt(j) exp(−ηℓ̂t(j))

exploration-exploitation

bandit

unbiased estimator

exponential weights

Theorem 2
EXP3 achieves an optimal regret bound of Õ(

√
KT)
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Proof (Sketch)
Decompose the expected regret as follows:

E

[∑
t

ℓt(i)
]
−

∑
t

ℓt(i∗) = E

[∑
t

ℓt(i)
]
−

∑
t

∑
i

qt(i)ℓt(i) (1)

+
∑

t

∑
i

qt(i)ℓt(i)−
∑

t
ℓt(i∗) (2)

The term (1) is bounded by γT since∑
i

pt(i)ℓt(i) ≤
∑

i
qt(i) + γ

For the term (2), we know that ℓ̂t(i) is an unbiased estimator of ℓt(i). Therefore,∑
t

∑
i

qt(i)ℓt(i)−
∑

t
ℓt(i∗) =

∑
t

∑
i

qt(i)E[ℓ̂t(i)]−
∑

t
E[ℓt(i∗)]

Applying the second-order regret bound for Hedge, and using pt(i) ≥ γ/K, we get that∑
t

∑
i

qt(i)E[ℓ̂t(i)]−
∑

t
E[ℓt(i∗)] ≤

lnK
η

+ η
∑

t

∑
i

qt(i)
pt(i)

≤
lnK
η

+
ηKT
γ
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Some Classes of Feedback Graphs
Let G be a directed graph on the action set A.

Let Gout(i) be the out-neighborhood of i in G, and Gin(i) be the in-neighborhood of i in G.

G is weakly observable if Gin(i) ̸= ∅ for each action i,
G is strongly observable if i ∈ Gin(i).
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Weak Domination Number
A weakly dominating set is a set D ⊆ A that dominates A, i.e. for every i ∈ A, there exists
j ∈ D such that i ∈ Gout(j). The weak domination number δ is the size of any smallest weakly
dominating set.
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Independence Number
An independent set is a set I ⊆ A of actions that are not connected by any edge. The
independence number α is the size of any largest independent set.



EXP3.G (Alon et. al., 2015)

Parameters: feedback graph G, stepsize η, explo-
ration γ ≤ 1/2

Initialization:
let u to the uniform distribution over A
set qt = u

Trials: for t = 1 to T
set pt = (1 − γ)qt + γu
play At ∼ pt

receive {ℓt(i) : i ∈ Gout(At)

estimate ℓ̂t(i) = ℓt(i)
Pt(i) I{i ∈ Gout(At)}

update qt+1(i) = qt(i) exp(−ηℓ̂t(i))∑
j∈A qt(j) exp(−ηℓ̂t(j))

Pt(i) =
∑

j∈Gout(at)
pt(j)

Theorem 3
EXP3.G achieves an expect regret of

O(
√
αT ln(KT)) for strongly observable feedback graphs

O(
3√
δ lnKT2) for weakly observable feedback graphs
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Main Lemma for Independence Numbers
Let G be a digraph over A in which each action i is assigned a weight wi. Assume that wi ≥ ϵ

for ϵ ∈ (0, 1/2), and
∑

i wi ≤ 1. Then,∑
i

wi
wi +

∑
j∈Gin(i) wj

≤ 4α ln
4K
αϵ

Proof (Sketch for strongly observable feedback graphs)
Based on the proof for EXP3, use the above lemma for refining the second-order term.

Using the fact ℓ̂t(i) is again an unbiased estimate of ℓt(i), together with the fact that
pt(i) ≥ (1 − γ)qt(i) ≥ 1/2qt(i), we have∑

t

∑
i

qt(i)E[ℓ̂t(i)] ≤
lnK
η

+ η
∑

t

∑
i

qt(i)
Pt(i)

≤
lnK
η

+ 2η
∑

t

∑
i

pt(i)
Pt(i)

Since pt(i) ≥ γ/K, we can use ϵ = γ/K, which yields:∑
t

∑
i

qt(i)E[ℓ̂t(i)] ≤
lnK
η

+ ηT
(

8α ln
4K2

αγ

)
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There are many questions related to online learning with feedback graphs.

About actions

Is the set of actions A finite or infinite?
For a finite set A, is it a simple collection of objects, or a combinatorial one?
For an infinite set A, is it compact? Is it convex?

About losses

Are the loss functions generated in a stochastic way, or an adversarial way?
For compact and convex sets A, is L a set of convex functions?
For combinatorial sets A, is L a set of linear, or submodular functions?

About feedback graphs

What are the structural properties of the class G?
Are the feedback graphs fixed in advance, or can they change over time?
Are the feedback graphs generated in a stochastic way, or an adversarial way?



There are many questions related to online learning with feedback graphs.

About actions

Is the set of actions A finite or infinite?
For a finite set A, is it a simple collection of objects, or a combinatorial one?
For an infinite set A, is it compact? Is it convex?

About losses

Are the loss functions generated in a stochastic way, or an adversarial way?
For compact and convex sets A, is L a set of convex functions?
For combinatorial sets A, is L a set of linear, or submodular functions?

About feedback graphs

What are the structural properties of the class G?
Are the feedback graphs fixed in advance, or can they change over time?
Are the feedback graphs generated in a stochastic way, or an adversarial way?



There are many questions related to online learning with feedback graphs.

About actions

Is the set of actions A finite or infinite?
For a finite set A, is it a simple collection of objects, or a combinatorial one?
For an infinite set A, is it compact? Is it convex?

About losses

Are the loss functions generated in a stochastic way, or an adversarial way?
For compact and convex sets A, is L a set of convex functions?
For combinatorial sets A, is L a set of linear, or submodular functions?

About feedback graphs

What are the structural properties of the class G?
Are the feedback graphs fixed in advance, or can they change over time?
Are the feedback graphs generated in a stochastic way, or an adversarial way?



There are many questions related to online learning with feedback graphs.

About actions

Is the set of actions A finite or infinite?
For a finite set A, is it a simple collection of objects, or a combinatorial one?
For an infinite set A, is it compact? Is it convex?

About losses

Are the loss functions generated in a stochastic way, or an adversarial way?
For compact and convex sets A, is L a set of convex functions?
For combinatorial sets A, is L a set of linear, or submodular functions?

About feedback graphs

What are the structural properties of the class G?
Are the feedback graphs fixed in advance, or can they change over time?
Are the feedback graphs generated in a stochastic way, or an adversarial way?



As an example of recent results in the setting of dynamic feedback graphs …

Online Learning with Stochastic Feedback Graphs

A is a simple collection {1, · · · ,K} of objects.
L is a set of (bounded) mappings A → [0, 1].
Loss functions are chosen in an adverarial way.
The feedback graphs are generated accoding to the Erdös-Renyi model, with
parameter r

Theorem 4 (Alon et. al., 2017)
The EXP3-G algorithm achieves a regret of

O

(√
T(1 − (1 − r)K) lnK

r

)
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Example with Combinatorial Actions: Congestion Games
The forecaster has access a directed graph with a source (I) and a sink (O). Let E be the edge
set, and A ⊆ {0, 1}|E| be the set of (indicator vectors of) source-sink paths. On each round t:

The forecaster chooses a path at ∈ A

The environment chooses a path ℓt ∈ P

The forecaster observes ⟨at, ℓt⟩ (number of clashing edges)
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