The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński ${ }^{1}$, Sławomir Lasota ${ }^{1}$, Ranko Lazić ${ }^{2}$, Jérôme Leroux ${ }^{3}$ and Filip Mazowiecki ${ }^{3}$

${ }^{1}$ Univ. Warsaw
${ }^{2}$ Univ. Warwick
${ }^{3}$ Univ. Bordeaux, CNRS, LaBRI

Funded by ANR project BRAVAS

The Reachability Problem for Petri Nets is Not Elementary

Wojciech Czerwiński ${ }^{1}$, Sławomir Lasota ${ }^{1}$, Ranko Lazić ${ }^{2}$, Jérôme Leroux ${ }^{3}$ and Filip Mazowiecki ${ }^{3}$

${ }^{1}$ Univ. Warsaw
${ }^{2}$ Univ. Warwick
${ }^{3}$ Univ. Bordeaux, CNRS, LaBRI

Funded by ANR project BRAVAS

Introduction

VASS and Counter Programs

Vector addition systems with states (VASS)

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^{d} \times Q$
Example: $d=3, Q=\{p, q\}$

Vector addition systems with states (VASS)

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^{d} \times Q$
Example: $d=3, Q=\{p, q\}$

Configurations $q(\mathbf{v})=(q, \mathbf{v}) \in Q \times \mathbb{N}^{d}$

Vector addition systems with states (VASS)

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^{d} \times Q$
Example: $d=3, Q=\{p, q\}$

Configurations $q(\mathbf{v})=(q, \mathbf{v}) \in Q \times \mathbb{N}^{d}$
Example run:

$$
p(0,0,1) \rightarrow p(0,1,0) \rightarrow q(0,1,0) \rightarrow q(0,0,2) \rightarrow p(1,0,2)
$$

Vector addition systems with states (VASS)

(d, Q, T), where $T \subseteq Q \times \mathbb{Z}^{d} \times Q$
Example: $d=3, Q=\{p, q\}$

Configurations $q(\mathbf{v})=(q, \mathbf{v}) \in Q \times \mathbb{N}^{d}$
Example run:
$p(0,0,1) \rightarrow p(0,1,0) \rightarrow q(0,1,0) \rightarrow q(0,0,2) \rightarrow p(1,0,2)$
Notation: $p(0,0,1) \xrightarrow{*} p(1,0,2)$

Decision problems

Reachability problem:
 Given: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$
 DECIDE: whether $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

Decision problems

Reachability problem:
Given: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$
DECIDE: whether $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

State reachability problem:
Given: VASS (d, Q, T) a configuration $p(\mathbf{u})$ and a control-state q DECIDE: whether exists \mathbf{v} s.t. $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

Decision problems

Reachability problem:
Given: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$
DECIDE: whether $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

State reachability problem:
Given: VASS (d, Q, T) a configuration $p(\mathbf{u})$ and a control-state q DECIDE: whether exists \mathbf{v} s.t. $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

- State reachability can be reduced to reachability

Decision problems

Reachability problem:
Given: VASS (d, Q, T) and configurations $p(\mathbf{u}), q(\mathbf{v})$
DECIDE: whether $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

State reachability problem:
Given: VASS (d, Q, T) a configuration $p(\mathbf{u})$ and a control-state q
DECIDE: whether exists \mathbf{v} s.t. $p(\mathbf{u}) \xrightarrow{*} q(\mathbf{v})$?

- State reachability can be reduced to reachability
- Many other problems reduce to reachability or state reachability

VASS rechability problem

- Central problem in TCS:
- formal languages,
- logic,
- concurrent systems,
- process calculi,...
- Model of concurrency (Petri Nets) with extensive applications in modelling and analysis of:
- hardware and software,
- database systems,
- chemical, biological and business processes.

Reachability state of art

Reachability state of art

Reachability state of art

Reachability state of art

Reachability state of art

Reachability state of art

Reachability state of art

1976	- EXPSPACE-hard (Lipton)
1981	- Decidable (Mayr)
1982	- Decidable (Kosaraju)
1992	- Decidable (Lambert)
2009	- Decidable (Leroux)
2011	- Decidable (Leroux)
2012	- Decidable (Leroux)
2015	- In $\mathbf{F}_{\omega^{3}}$ (Leroux and Schmitz)

Reachability state of art

1976	EXPSPACE-hard (Lipton)
1981	Decidable (Mayr)
1982	Decidable (Kosaraju)
1992	Decidable (Lambert)
2009	Decidable (Leroux)
2011	Decidable (Leroux)
2012	Decidable (Leroux)
2015	$\ln \mathbf{F}_{\omega^{3}}$ (Leroux and Schmitz)
2019	Nonelementary (this talk)

Reachability state of art

1976	EXPSPACE-hard (Lipton)
1981	Decidable (Mayr)
1982	Decidable (Kosaraju)
1992	Decidable (Lambert)
2009	Decidable (Leroux)
2011	Decidable (Leroux)
2012	Decidable (Leroux)
2015	In $\mathbf{F}_{\omega^{3}}$ (Leroux and Schmitz)
2019	Nonelementary (this talk)
2019 ?	In \mathbf{F}_{ω} (Leroux and Schmitz)

Reachability state of art

State reachability Rackoff 1978 EXPSPACE-complete

1976	- EXPSPACE-hard (Lipton)
1981	- Decidable (Mayr)
1982	- Decidable (Kosaraju)
1992	Decidable (Lambert)
2009	- Decidable (Leroux)
2011	- Decidable (Leroux)
2012	- Decidable (Leroux)
2015	- In $\mathrm{F}_{\omega^{3}}$ (Leroux and Schmitz)
2019	- Nonelementary (this talk)
2019?	- In \mathbf{F}_{ω} (Leroux and Schmitz)

Counter programs

Counter programs

- Operations over bounded counters \bar{x} :

$$
\bar{x}+=1
$$

$\bar{x}-=1$
zero? \bar{x}
max? \bar{x}

- Operations over an unbounded counter x :
$x+=1$
$x-=1$
- Non deterministic loop
- A last operation halt if $x_{1}, \ldots, x_{n}=0$

Semantics

A B-run is a run such that:

- bounded counters ranges in $\{0, \ldots, B\}$,
- unbounded counters ranges in \mathbb{N}.

A run is complete if it:

- starts with zero in every counter, and
- ends by executing the last halt if $x_{1}, \ldots, x_{n}=0$.

Counter Programs $=$ VASS

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

$p(0,0,1) \xrightarrow{*} p(1,0,2) ?$

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

$p(0,0,1) \xrightarrow{*} p(1,0,2) ?$

$$
\begin{aligned}
& z+=1 \\
& \text { loop } \\
& \quad \text { loop } \\
& \quad y+=1 \quad z-=1 \\
& \quad \text { loop } \\
& \quad y-=1 \quad z+=2 \\
& \quad x+=1 \\
& x-=1 \quad z-=2 \\
& \text { halt if } x, y, z=0
\end{aligned}
$$

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

$$
p(0,0,1) \xrightarrow{*} p(1,0,2) ?
$$

$z+=1$
loop
loop

$$
y+=1 \quad z-=1
$$

loop

$$
y-=1 \quad z+=2
$$

$$
x+=1
$$

$$
x-=1 \quad z-=2
$$

halt if $x, y, z=0$.

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

Counter Programs $=$ VASS

Reachability problem (for counter programs):
Given: A counter program and a bound B.
Decide: Does it have a complete B-run ?

$p(0,0,1) \xrightarrow{*} p(1,0,2) ?$

$$
\begin{aligned}
& z+=1 \\
& \text { loop } \\
& \quad \text { loop } \\
& \quad y+=1 \quad z-=1 \\
& \text { loop } \\
& \quad y-=1 \quad z+=2 \\
& \quad x+=1 \\
& x-=1 \quad z-=2 \\
& \text { halt if } x, y, z=0
\end{aligned}
$$

Outline

- High level idea of the proof
- The factorial amplifier
- Composition operator

A TOWER-complete problem

The following problem is TOWER-complete (see Schmitz 2016) Given: A counter program without unbounded counters and n. DECIDE: Does it have a complete $3 \underbrace{!\cdots!}_{n \text { times }}$-run ?

B-computed relations

The relation B-computed in some counters $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}$ is the set of tuples of values after a complete B-run in those counters.

B-computed relations

The relation B-computed in some counters $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}$ is the set of tuples of values after a complete B-run in those counters.

```
loop
    i += 1
    // assert \overline{a}=0
    loop
        x += 1 à += 1
        max? à
        loop
        à -= 1
    zero? à
max? \
halt
```


B-computed relations

The relation B-computed in some counters $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}$ is the set of tuples of values after a complete B-run in those counters.
loop
$\overline{\mathrm{i}}+=1$
// assert $\overline{\mathrm{a}}=0$
loop

$$
x+=1 \quad \bar{a}+=1
$$

max? ā
loop
à $-=1$
zero? ā
max? \bar{i}
halt

B-computed relations

The relation B-computed in some counters $\mathrm{x}_{1}, \ldots, \mathrm{x}_{l}$ is the set of tuples of values after a complete B-run in those counters.
loop
$\overline{\mathrm{i}}+=1$
// assert $\overline{\mathrm{a}}=0$
loop

$$
x+=1 \quad \bar{a}+=1
$$

max? ā
loop
à $-=1$
zero? ā
max? \bar{i}
halt

The relation B-computed in x is $\mathrm{x}=B^{2}$.

(B, R)-amplifier

A (B, R)-amplifier is a counter program that B-computes in $\mathrm{b}, \mathrm{c}, \mathrm{d}$ the relation $\mathrm{b}=R \wedge \mathrm{c}>0 \wedge \mathrm{~d}=\mathrm{c} \cdot R$.

(B, R)-amplifier

A (B, R)-amplifier is a counter program that B-computes in $\mathrm{b}, \mathrm{c}, \mathrm{d}$ the relation $\mathrm{b}=R \wedge \mathrm{c}>0 \wedge \mathrm{~d}=\mathrm{c} \cdot R$.

Example: Counter program \mathcal{A}_{3}

$$
\mathrm{b}+=3 \quad \mathrm{c}+=1 \quad \mathrm{~d}+=3
$$

loop

$$
c+=1 \quad d+=3
$$

halt
\mathcal{A}_{3} is a $(0,3)$-amplifier.

Simulation with amplifiers

Simulation with amplifiers

We provide a composition operator $\mathcal{A} \triangleright \mathcal{P}$ such that if:

- \mathcal{A} is a (B, R)-amplifier.
- \mathcal{P} is a counter program.

Then:

> Relations R-computed by \mathcal{P}
> $=$
> Relations B-computed by $\mathcal{A} \triangleright \mathcal{P}$

Factorial Amplifier

There exists a counter program \mathcal{F} that is a $(B, B!)$-amplifier for every $B>0$ called the factorial amplifier.

Factorial Amplifier

There exists a counter program \mathcal{F} that is a $(B, B!)$-amplifier for every $B>0$ called the factorial amplifier.

$$
\begin{gathered}
\text { Relations } 3 \overbrace{!\cdots!}^{n \text { times }} \text {-computed by } \mathcal{P} \\
= \\
\text { Relations 0-computed by } \mathcal{A}_{3} \triangleright \underbrace{\mathcal{F} \triangleright \cdots \triangleright \mathcal{F}}_{n \text { times }} \triangleright \mathcal{P}
\end{gathered}
$$

The Factorial Amplifier

to B-compute the relation $\mathrm{b}=B!\wedge \mathrm{c}>0 \wedge \mathrm{~d}=\mathrm{c} \cdot B$!

Main idea

Implement with a counter program:

$$
n \cdot \prod_{1 \leq i<B} \frac{i+1}{i}=n \cdot B
$$

A weak multiplier by $\frac{3}{2}$

// assert $\mathrm{x}=x \quad \mathrm{x}^{\prime}=x^{\prime}$

loop

$$
x-=2 \quad x^{\prime}+=3
$$

loop

$x^{\prime}-=1 \quad x+=1$
// assert $\mathrm{x}+\mathrm{x}^{\prime} \leq \frac{3}{2}\left(x+x^{\prime}\right)$
// assert $\mathrm{x}+\mathrm{x}^{\prime}=\frac{3}{2}\left(x+x^{\prime}\right) \Rightarrow x^{\prime}=0$

A weak multiplier by $\frac{3}{2}$

$$
/ / \text { assert } \mathrm{x}=x \quad \mathrm{x}^{\prime}=x^{\prime}
$$

loop
$x-=2 \quad x^{\prime}+=3$
loop
$x^{\prime}-=1 \quad x+=1$
$/ /$ assert $\mathrm{x}+\mathrm{x}^{\prime} \leq \frac{3}{2}\left(x+x^{\prime}\right)$
$/ /$ assert $\mathrm{x}+\mathrm{x}^{\prime}=\frac{3}{2}\left(x+x^{\prime}\right) \Rightarrow x^{\prime}=0$

x	x^{\prime}	$\mathrm{x}+\mathrm{x}^{\prime}$
15	0	15
13	3	16
11	6	17
9	9	18
7	12	19
5	15	20
3	18	21
1	21	$22=\frac{3}{2} 15-\frac{1}{2}$
2	20	22
3	19	22
\vdots	\vdots	\vdots
21	1	22
22	0	22

Implementing $n \cdot \prod_{1 \leq i<B} \frac{i+1}{i}=n \cdot B$

Implementing $n \cdot \prod_{1 \leq i<B} \frac{i+1}{i}=n \cdot B$

$$
\begin{aligned}
& \overline{\mathrm{i}}+=1 \quad \mathrm{x}+=1 \quad \mathrm{y}+=1 \\
& \text { loop } \\
& x+=1 \quad y+=1 \\
& \text { loop } \\
& \text { // assert } x+x^{\prime} \leq y \cdot \bar{i} \\
& \operatorname{lop}_{x-=\bar{i}} \quad x^{\prime}+=\bar{i}+1 \\
& \text { loop } \\
& x^{\prime}-=1 \quad x+=1 \\
& \text { weak multiplier by } \frac{\overline{\mathrm{i}}+1}{\overline{\mathrm{i}}} \\
& \begin{array}{l}
/ / \text { assert } x+x^{\prime} \leq y \cdot(\bar{i}+1) \\
\bar{i}+=1
\end{array} \\
& \text { max? } \bar{i} \\
& \text { loop } \\
& x-=\overline{\mathrm{i}} \quad y-=1
\end{aligned}
$$

halt if $\mathrm{y}=0$

How to simulate $x-=\bar{i}$?

x is an unbounded counter
$\overline{\mathrm{i}}$ is a bounded counter and \bar{a} is an auxiliary bounded counter assumed to be zero.

How to simulate $x-=\bar{i}$?

x is an unbounded counter
$\overline{\mathrm{i}}$ is a bounded counter and
\bar{a} is an auxiliary bounded counter assumed to be zero.

$$
\begin{aligned}
& / / \text { assert } \mathrm{x}=x \quad \overline{\mathrm{i}}=i \quad \overline{\mathrm{a}}=0 \\
& \text { loop } \\
& \quad \mathbf{x}-=1 \quad \overline{\mathrm{i}}-=1 \quad \overline{\mathrm{a}}+=1 \\
& \text { zero? } \overline{\mathrm{i}} \\
& / / \text { assert } \mathrm{x}=x-i \quad \overline{\mathrm{i}}=0 \quad \overline{\mathrm{a}}=i \\
& \text { loop } \\
& \quad \overline{\mathrm{i}}+=1 \quad \overline{\mathrm{a}}-=1 \\
& \text { zero? } \overline{\mathrm{a}} \\
& / / \text { assert } \mathrm{x}=x-i \quad \overline{\mathrm{i}}=i \quad \overline{\mathrm{a}}=0
\end{aligned}
$$

How to simulate $x+=\overline{\mathrm{i}}+1$?

x is an unbounded counter
\bar{i} is a bounded counter and \bar{a} is an auxiliary bounded counter assumed to be zero.

How to simulate $x+=\overline{\mathrm{i}}+1$?

x is an unbounded counter
\bar{i} is a bounded counter and
\bar{a} is an auxiliary bounded counter assumed to be zero.

$$
\begin{aligned}
& x+=1 \\
& \text { loop } \\
& x+=1 \quad \overline{\mathrm{i}}-=1 \quad \bar{a}+=1 \\
& \text { zero? } \bar{i} \\
& \text { loop } \\
& \overline{\mathrm{i}}+=1 \quad \overline{\mathrm{a}}-=1 \\
& \text { zero? ā }
\end{aligned}
$$

The factorial amplifier

The factorial amplifier

$$
\overline{\mathrm{i}}+=1 \quad \mathrm{~b}+=1 \quad \mathrm{c}+=1 \quad \mathrm{~d}+=1 \quad \mathrm{x}+=1 \quad \mathrm{y}+=1
$$

loop

$$
c+=1 \quad d+=1 \quad x+=1 \quad y+=1
$$

loop

Multiply	x	d	c	b
by	$\frac{\overline{\mathrm{i}}+1}{\mathrm{i}}$	$\frac{\overline{\mathrm{i}}+1}{\bar{i}}$	$\frac{1}{\bar{i}}$	$\overline{\mathrm{i}}+1$
$\mathbf{i}+=1$				

max? \bar{i}
loop

$$
x-=\bar{i} \quad y-=1
$$

halt if $\mathrm{y}=0$

Multiply	x	d	c	b
by	$\frac{\overline{\mathrm{i}+1}}{\overline{\mathrm{i}}}$	$\frac{\overline{\mathrm{i}}+1}{\overline{\mathrm{i}}}$	$\frac{1}{\overline{\mathrm{i}}}$	$\overline{\mathrm{i}}+1$

Multiply	x	d	c	b
by	$\frac{\overline{\mathrm{i}}+1}{\overline{\mathrm{i}}}$	$\frac{\overline{\mathrm{i}}+1}{\overline{\mathrm{i}}}$	$\frac{1}{\overline{\mathrm{i}}}$	$\overline{\mathrm{i}}+1$

$/ /$ assert $x=d \leq y \cdot \bar{i} \wedge c \geq \frac{y}{(i-1)!}$ loop

$$
c-=\bar{i} \quad c^{\prime}+=1
$$

loop at most b times

$$
d-=\overline{\mathrm{i}} \quad x-=\overline{\mathrm{i}} \quad \mathrm{~d}^{\prime}+=\overline{\mathrm{i}}+1
$$

loop

$$
b-=1 \quad b^{\prime}+=\bar{i}+1
$$

loop

$$
b^{\prime}-=1 \quad b+=1
$$

loop

$$
c^{\prime}-=1 \quad c+=1
$$

loop at most b times

$$
d^{\prime}-=1 \quad d+=1 \quad x+=1
$$

Controled loops

loop at most b times $<$ body $>$
b is an unbounded counter
b^{\prime} is an auxiliary unbounded counter

Controled loops

loop at most b times $<$ body $>$
b is an unbounded counter
b^{\prime} is an auxiliary unbounded counter
loop
$\mathrm{b}-=1 \quad \mathrm{~b}^{\prime}+=1$
loop
$b^{\prime}-=1 \quad b+=1$
<body>

The composition operator

Composing with amplifiers

Composing with amplifiers

Relations R-computed by \mathcal{P}

$$
\text { Relations } B \text {-computed by } \underbrace{\mathcal{A}}_{(B, R) \text {-amplifier }} \triangleright \mathcal{P}
$$

Composing with amplifiers

Relations R-computed by \mathcal{P}
$=$
Relations B-computed by $\underbrace{\mathcal{A}}_{(B, R) \text {-amplifier }} \triangleright \mathcal{P}$

body of \mathcal{A}
initialization body
modified body of \mathcal{P}
halt if $d, \mathrm{y}_{1}, \ldots, \mathrm{z}_{1}, \ldots=0$

Initialization body

$$
\frac{\text { Invariants }}{b=R \wedge d=c \cdot R}
$$

Encoding: We replace every bounded counter \bar{x}_{i} of \mathcal{P} by two fresh unbounded counters x_{i} and x_{i}^{\prime} satisfying $\mathrm{x}_{i}+\mathrm{x}_{i}^{\prime}=R$.

Initialization body

$$
\frac{\text { Invariants }}{b=R \wedge d=c \cdot R}
$$

Encoding: We replace every bounded counter \bar{x}_{i} of \mathcal{P} by two fresh unbounded counters x_{i} and x_{i}^{\prime} satisfying $\mathrm{x}_{i}+\mathrm{x}_{i}^{\prime}=R$.

```
loop
    \(\mathrm{x}_{1}^{\prime}+=1 \quad \cdots \quad \mathrm{x}_{l}^{\prime}+=1\)
    \(b-=1 \quad d-=1\)
c \(-=1\)
```

c decreased by 1 and d by at most R
So if not complete $\mathrm{d}>\mathrm{c} \cdot R$

Invariants OK	Invariants NOK
$d=c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime}=R$	$d>c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime} \leq R$

Modified body of \mathcal{P}

Replace $\bar{x}_{i}+=1$ with $x_{i}+=1 \quad x_{i}^{\prime}-=1$ Replace $\bar{x}_{i}-=1$ with $x_{i}-=1 \quad x_{i}^{\prime}+=1$

Invariants OK	Invariants NOK
$d=c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime}=R$	$d>c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime} \leq R$

Modified body of \mathcal{P}

Replace $\bar{x}_{i}+=1$ with $\mathrm{x}_{i}+=1 \quad \mathrm{x}_{i}^{\prime}-=1$
Replace $\bar{x}_{i}-=1$ with $x_{i}-=1 \quad x_{i}^{\prime}+=1$

Replace zero? \bar{x}_{i} with

loop

$$
\begin{aligned}
& x_{i}+=1 \quad x_{i}^{\prime}-=1 \\
& d-=1
\end{aligned}
$$

c $-=1$

loop

$$
\begin{aligned}
& x_{i}-=1 \quad x_{i}^{\prime}+=1 \\
& d-=1
\end{aligned}
$$

$$
c-=1
$$

Invariants OK	Invariants NOK
$d=c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime}=R$	$d>c \cdot R \wedge \mathrm{x}_{i}+\mathrm{x}_{i}^{\prime} \leq R$

Modified body of \mathcal{P}

Replace $\bar{x}_{i}+=1$ with $\mathrm{x}_{i}+=1 \quad \mathrm{x}_{i}^{\prime}-=1$
Replace $\bar{x}_{i}-=1$ with $x_{i}-=1 \quad x_{i}^{\prime}+=1$

Replace zero? \bar{x}_{i} with

$$
\begin{aligned}
& \text { loop } \\
& \quad x_{i}+=1 \quad x_{i}^{\prime}-=1 \\
& \quad d-=1 \\
& c-=1
\end{aligned}
$$

loop
c decreased by 2 and d by at most $2 R$

So if not complete $\mathrm{d}>\mathrm{c} \cdot R$
$\mathrm{x}_{i}-=1 \quad \mathrm{x}_{i}^{\prime}+=1$
$\mathrm{d}-=1$
c $-=1$

To sum up

To sum up

We obtain that way a composition operator \triangleright such that:

$$
\begin{gathered}
\text { Relations } 3 \overbrace{!\cdots!}^{n \text { times }} \text {-computed by } \mathcal{P} \\
= \\
\text { Relations 0-computed by } \mathcal{A}_{3} \triangleright \underbrace{\mathcal{F} \triangleright \cdots \triangleright \mathcal{F}}_{n \text { times }} \triangleright \mathcal{P}
\end{gathered}
$$

Conclusion

Conclusion

- Reachability problem \ggg State reachability problem

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary

In formal languages, logic, concurrent systems, process calculi,...

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary In formal languages, logic, concurrent systems, process calculi,...
- We can do h-EXPSPACE-hardness in dimension $h+13$ (so fixed)

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary In formal languages, logic, concurrent systems, process calculi,...
- We can do h-EXPSPACE-hardness in dimension $h+13$ (so fixed) Can we do Tower in fixed dimension?

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary In formal languages, logic, concurrent systems, process calculi,...
- We can do h-EXPSPACE-hardness in dimension $h+13$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is still open Between Tower $\left(\mathbf{F}_{3}\right)$ and Ackermann $\left(\mathbf{F}_{\omega}\right)$

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary In formal languages, logic, concurrent systems, process calculi,...
- We can do h-EXPSPACE-hardness in dimension $h+13$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is still open Between Tower $\left(\mathbf{F}_{3}\right)$ and Ackermann $\left(\mathbf{F}_{\omega}\right)$
- Can we improve lower bounds of Pushdown-VASS, BVASS... ?

Conclusion

- Reachability problem \ggg State reachability problem
- Plethora of problems are not elementary In formal languages, logic, concurrent systems, process calculi,...
- We can do h-EXPSPACE-hardness in dimension $h+13$ (so fixed) Can we do Tower in fixed dimension?
- The complexity is still open Between Tower $\left(\mathbf{F}_{3}\right)$ and Ackermann $\left(\mathbf{F}_{\omega}\right)$
- Can we improve lower bounds of Pushdown-VASS, BVASS... ?
- This originated from studying 1-Pushdown-VASS

